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Abstract. We present a novel surface parameterization technique using
hyperspherical harmonics (HSH) in representing compact, multiple, dis-
connected brain subcortical structures as a single analytic function. The
proposed hyperspherical harmonic representation (HyperSPHARM) has
many advantages over the widely used spherical harmonic (SPHARM)
parameterization technique. SPHARM requires flattening 3D surfaces to
3D sphere which can be time consuming for large surface meshes, and
can’t represent multiple disconnected objects with single parameteriza-
tion. On the other hand, HyperSPHARM treats 3D object, via simple
stereographic projection, as a surface of 4D hypersphere with extremely
large radius, hence avoiding the computationally demanding flattening
process. HyperSPHARM is shown to achieve a better reconstruction with
only 5 basis compared to SPHARM that requires more than 441.

1 Introduction

Many shape modeling frameworks in computational anatomy assume topological
invariance between objects and are not applicable for objects with different or
changing topology. There are numerous such examples from longitudinal child
development to cancer growth. For example, an infant may have about 300-350
bones at birth but an adult has 206 bones. These bones fuse together as the infant
grows. This type of topological difference and changes cannot be incorporated
directly into the processing and analysis pipeline with existing shape models that
assume topological invariance and mainly work on a single connected component.
The difficulty is mainly caused by the lack of a single, coherent mathematical
parameterization for multiple, disconnected objects.

Probably the most widely applied shape parameterization technique for cor-
tical structures is the spherical harmonic (SPHARM) representation [4,7,10],
which has been mainly used as a data reduction technique for compressing
global shape features into a small number of coefficients. The main global ge-
ometric features are encoded in low degree coefficients while the noise will be
in high degree spherical harmonics. The method has been used to model vari-
ous brain structures such as ventricles [7], hippocampi [10] and cortical surfaces
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[4]. SPHARM, however, can’t represent multiple disconnected structures with a
single parameterization. Since SPHARM requires a smooth map from surfaces
to a 3D sphere, various computationally intensive surface flattening techniques
have been proposed: diffusion mapping [4], conformal mapping [1], and area pre-
serving mapping [7]. The surface flattening is used to parameterize the surface
using two spherical angles. The angles serve as coordinates for representing the
surface using spherical harmonics. Then the surface coordinates can be mapped
onto the sphere and each coordinate is represented as a linear combination of
spherical harmonics.

Note that a 3D volume is a surface in 4D. By performing simple stereographic
projection on a 3D volume, it is possible to embed the 3D volume onto the surface
of a 4D hypersphere, which bypasses the difficulty of flattening 3D surface to 3D
sphere. Extending the concept further, any two or more disconnected 3D objects
can be projected onto a single connected surface in 4D hypersphere. Then the
disconnected 3D objects can be represented as the linear combination of 4D
hyperspherical harmonics (HSH), which are the multidimensional analogues of
the 3D spherical harmonics.

The HSH have been mainly confined to quantum chemistry, where their util-
ity first became evident with respect to solving the Schrödinger equation for the
hydrogen atom. It had been solved in position-space by Schrödinger, himself, but
not in momentum-space, which is related to position-space via the Fourier trans-
form. Sometime later, V. Fock solved the Schrödinger equation for the hydrogen
atom directly in momentum-space. In his classic paper [6], Fock stereographi-
cally projected 3D momentum-space onto the surface of a 4D unit hypersphere,
and after this mapping was made, he was able to show that the eigenfuctions
were the 4D HSH. Recently, the HSH have been utilized in a wider array of fields
than just quantum chemistry, including computer graphics visualization [3] and
crystallography [9]. However, as of yet, they have remained elusive for medical
imaging.

In this paper, following the approach of Fock, we model multiple disconnected
3D objects in terms of the 4D HSH by stereographically projecting each object’s
surface coordinates onto a 4D hypersphere, and label such a representation Hy-
perSPHARM. Significantly, we show that HyperSPHARM can better reconstruct
such objects than SPHARM using just a few basis functions. The method is ap-
plied to modeling disconnected brain subcortical structures, specifically the left
and right hippocampus and amygdala.

2 Methods

2.1 4D Hyperspherical Harmonics

Consider the 4D unit hypersphere S3 existing in R
4. The Laplace-Beltrami op-

erator on S3 is defined as ΔS3 = 1
sin2 β

∂
∂β sin2 β ∂

∂β + 1
sin2 β

ΔS2 , where ΔS2 is the

Laplace-Beltrami operator on the unit sphere S2. The eigenfuctions of ΔS3 are
the 4D HSH Zm

nl(β, θ, φ): ΔS3Zm
nl = −l(l+2)Zm

nl. The 4D HSH are defined as [5]
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Table 1. List of a Few HSH
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(1)
where (β, θ, φ) obey (β ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π]), Cl+1

n−1 are the Gegenbauer
(ultraspherical) polynomials, and Y m

l are the 3D spherical harmonics. The index
l denotes the degree of the HSH, m is the order, and n = 0, 1, 2, ..., and these
three integers obey the conditions 0 ≤ l ≤ n and −l ≤ m ≤ l. The number of
HSH corresponding to a given value of n is (n+ 1)2. The first few 4D HSH are
shown in Table 1. The HSH form an orthonormal basis on the hypersphere, and
the normalization condition reads

∫ 2π

0

∫ π

0

∫ π

0

Zm
nl(β, θ, φ)Z

m′∗
n′l′ (β, θ, φ) sin

2 β sin θdβdθdφ = δnn′δll′δmm′ (2)

2.2 4D Stereographic Projection of 3D Surface Coordinates onto
Hypersphere

Consider a 3D finite, compact object (i.e. has no singularities) comprised of
surface coordinates s = (s1, s2, s3). In order to model the surface coordinates
with the HSH, we need to map them onto a 4D hypersphere, which can be
achieved via stereographic projection [6]. The surface coordinates in spherical
space are s1 = r sin θ cosφ, s2 = r sin θ sinφ, and s3 = r cos θ, where r =√
(s1)2 + (s2)2 + (s3)2. Consider a 4D hypersphere of radius po, whose coor-

dinates are defined as

u1 = po sinβ sin θ cosφ

u2 = po sinβ sin θ sinφ

u3 = po sinβ cos θ

u4 = po cosβ.

The relationship between (s1, s2, s3) and (u1, u2, u3, u4) is then

u1 =
2p2os

1

r2 + p2o
, u2 =

2p2os
2

r2 + p2o
, u3 =

2p2os
3

r2 + p2o
, u4 =

po(r
2 − p2o)

r2 + p2o
(3)
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Fig. 1. The 3D subcortical structures (left) in the coordinates (s1, s2, s3) went through
the 4D stereographic projection that resulted in conformally deformed structures
(right) in the 4D spherical coordinates (β, θ, φ). The 3D subcortical structure is then
embedded on the surface of the 4D hypersphere with radius p0 = 2000, which makes
the surface of the hypersphere to be almost Euclidean.

According to Eq. (3), the surface coordinate (0, 0, 0) projects onto the south pole
(0, 0, 0,−po) of the hypersphere. As r → ∞, the projection (u1, u2, u3, u4) moves
closer to the north pole (0, 0, 0, po) of hypersphere. Thus, the north pole is not
associated with any (s1, s2, s3), but gives us a way of envisioning infinity as a
point. Eq. (3) establishes a one-to-one correspondence between the 3D volume
and 4D hypersphere (Figure 1). The radius of the hypersphere po controls the
density of the projected surface coordinates onto the hypersphere’s surface.

Stereographic projection exhibits two important properties. First, it is confor-
mal, which means it preserves angles - the angles (θ, φ) defining the 3D surface
are preserved in 4D hyperspherical space. However, stereographic projection does
not preserve volume; in general, the volume of a region in the 3D plane doesn’t
equal the volume of its projection onto the hypersphere.

2.3 HSH Expansion of 3D Surface Coordinates

Stereographically projecting a 3D object’s surface coordinates onto a 4D hy-
persphere results in them existing along the hypersphere’s surface. According
to Fourier analysis, any square-integrable function defined on a sphere can be
expanded in terms of the spherical harmonics. Thus, we can expand each coor-
dinate component si, where i = 1, 2, 3, in terms of the 4D HSH:

sipo
(β, θ, φ) ≈

N∑
n=0

n∑
l=0

l∑
m=−l

Ci
nlmZm

nl(β, θ, φ), (4)
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Fig. 2. Hyperspherical harmonic representation of amygdala and hippocampus sur-
faces for subject 10 and 60. The vertex-wise reconstruction errors are also plotted. As
expected, most errors are occurring near sharp peaks and corners.

where sipo
denotes the ith component of the surface coordinates s existing on

hypersphere of radius po. The realness of the surface coordinates requires use
of the real HSH, and so we employ a modified real basis used in [8] for Y m

l .
For a given truncation order N , the total number of expansion coefficients is
W = (N + 1)(N + 2)(2N + 3)/6.

2.4 Numerical Implementation

Suppose each si of our 3D surface consists ofM vertices. This is the total number
of mesh vertices for all disconnected surfaces. The task then is to estimate each
si’s coefficients Ci

nlm in Eq. (4) from the M surface vertices.
Let Ωj = (βj , θj , φj) denote the hyperspherical angles at the j-th mesh vertex.

Denote si as the M x 1 vector representing each si’s M vertices, Ci the W x 1
vector of unknown expansion coefficients Ci

nlm for each si, and A the M x W
matrix constructed with the HSH basis

A =

⎛
⎜⎝

Z0
00(Ω1) Z0

10(Ω1) Z−1
11 (Ω1) Z0

11(Ω1) · · · ZN
NN (Ω1)

...
...

...
...

. . .
...

Z0
00(ΩM ) Z0

10(ΩM ) Z−1
11 (ΩM ) Z0

11(ΩM ) · · · ZN
NN(ΩM )

⎞
⎟⎠ .

Thus, the general linear system representing Eq. (4) is described by si = ACi.
This system of over-determined equations is solved via linear least squares, yield-
ing

Ĉi = (ATA)−1AT si (5)

The reconstructed si is ŝi = AĈi, and so our reconstructed 3D surface is defined

by the M x 3 matrix ŝ = (ŝ1, ŝ2, ŝ3). The mean squared error (MSE) between
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Table 2. The mean squared error (MSE) and its standard deviation of reconstruction.
MSE is computed over all mesh vertices and averaged over 69 subjects. Degree 2, 10 and
20 SPHARM representations require 32 = 9, 112 = 121 and 212 = 441 basis functions,
respectively. The reconstruction error of HSH expansion of order N = 1 is substantially
smaller than those of SPHARM, even though only 5 HSH basis functions are used.

SPHARM 2 SPHARM 10 SPHARM 20 HSH 1

Left Amygdala 1.08 ± 0.17 0.054 ± 0.010 0.022 ± 0.005 0.18 ± 0.04× 10−5

Right Amygdala 0.60 ± 0.11 0.052 ± 0.008 0.023 ± 0.003 0.27 ± 0.06 ×10−5

Left Hippocampus 1.77 ± 0.33 0.127 ± 0.026 0.043 ± 0.040 0.90 ± 0.20 ×10−5

Right Hippocampus 1.08 ± 0.17 0.054 ± 0.010 0.022 ± 0.005 0.18 ± 0.04 ×10−5

the original surface and the reconstructed surface can then be computed as
tr
[
(s − ŝ)T (s− ŝ)

]
/M .

3 Experimental Results and Applications

We collected high-resolution T1-weighted inverse recovery fast gradient echo
MRI in 124 contiguous 1.2-mm axial slices (TE=1.8 ms; TR=8.9 ms; flip angle
= 10◦; FOV = 240 mm; 256 × 256 data acquisition matrix) of 69 middle-age and
elderly adults ranging between 38 to 79 years (mean age = 58.0 ± 11.4 years).
The data were collected as a part of a national study called MIDUS (Midlife in
US; http://midus.wisc.edu) for the health and well-being in the aged popu-
lation [12]. There are 23 men and 46 women in the study. Brain tissues in the
MRI scans were automatically segmented using Brain Extraction Tool (BET)
[11] and trained raters manually segmented the parts of limbic system: amygdala
and hippocampus. A nonlinear image registration using the diffeomorphic shape
and intensity averaging technique with the cross-correlation as the similarity
metric through Advanced Normalization Tools (ANTS) [2] was performed and
the study specific template is constructed. The isosurfaces of the segmentation
were extracted using the marching cube algorithm (Figure 2).

Four brain subcortical structures, specifically the left and right hippocampus
and amygdala, were reconstructed for 69 subjects. For each structure, the HSH
expansion parameters were N = 1 and radius po = 2000, which results in W =
5 HSH expansion coefficients for each si. So total of 15 HSH coefficients can
parameterize a single surface and 60 coefficients all four disconnected surfaces
(i.e. left and right hippocampus and amygdala). Figure 2 shows the reconstructed
HSH surfaces for two subjects. The length of the residual is computed and plotted
on the reconstructed surfaces. As expected, the most reconstruction errors are
found near peaks and corners.

3.1 Comparison against SPHARM Representation

We have compared the reconstruction errors between HSH and SPHARM rep-
resentations. Hippocampus and amygdala surface meshes are flattened to a unit

http://midus.wisc.edu
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Fig. 3. The regions showing statistically significant age effect thresholded at p < 0.05
(corrected). There is no gender effect.

sphere and resampled to a uniform grid along the sphere. Then degree 2, 10 and
20 SPHARM representations are constructed. The MSE of each reconstruction
is computed within each surface and averaged over 69 subjects (Table 2). Its
standard error is also computed over all 69 subjects. The degree k SPHARM
representations requires (k + 1)2 SPHARM basis functions.

The degree 2, 10 and 20 SPHARM representations require 9, 121 and 441
basis functions. Even with only 5 basis functions, HSH is achieving substantially
low MSE compared with SPHARM reconstruction with 441 basis functions,
demonstrating the superior efficiency in the HSH representation.

3.2 Influence of Age and Gender

HSH representations were obtained for hippocampus and amygdala surfaces of all
69 subjects. The representation behaves like surface smoothing technique where
high frequency noise is removed as shown in Figure 2. The 69 reconstructed
surfaces are then averaged to produce the population specific template. The 3D
displacement vector field from the template to individual surface is taken as the
response vector in the multivariate general linear model (MGLM) [4] and its
T -statistic is computed and thresholded at p < 0.05. The random field based
multiple comparisons are performed to give stringent results. We have detected
significant influence of age mainly on the tail regions of the hippocampus while
there is no influence of gender on any of the structures.

4 Conclusion and Discussion

In this paper, we have presented a new analytic approach for representing mul-
tiple disconnected shapes using a single analytic function, which is a linear com-
bination of HSH. The method is applied to parameterizing 4 disconnected sub-
cortical structures (two amygdalae and two hippocampi) using only 60 HSH
coefficients. The resulting HSH coefficients are global and contain information
about all four structures, so they do not provide any local shape information.
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Therefore, HyperSPHARM might be better suited to sparse techniques such as
wavelets, which will be explored in future. Despite HSH being a global basis, by
reconstructing surfaces at each voxel and using HSH as a way to filter out high
frequency noise, it was possible to use HSH for local inference at vertex level as
shown in our application. Although the individual image volumes are registered
to a template using diffeomorphic warping [2], we might only need an affine reg-
istration to initially align the structures and simply match the coefficients as in
SPHARM [4] but the issue is not explored here and left as a future study.
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