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Background: Although health outcomesmay have fundamentally nonlinear relationships with relevant behavioral, psychological,
cognitively, or biological predictors, most analytical models assume a linear relationship. Furthermore, some health
outcomes may have multimodal distributions, but most statistical models in common use assume a unimodal, normal
distribution. Suitable nonlinear models should be developed to explain health outcomes.

Objective: The aim of this study is to provide an overview of a cusp catastrophe model for examining health outcomes and to
present an example using grip strength as an indicator of a physical functioning outcome to illustrate how the technique may
be used. Results using linear regression, nonlinear logistic model, and the cusp catastrophe model were compared.

Methods: Data from 935 participants from the Survey of Midlife Development in the United States (MIDUS) were analyzed.
The outcome was grip strength; executive function and the inflammatory cytokine interleukin-6 were predictor variables.

Results: Grip strength was bimodally distributed. On the basis of fit and model selection criteria, the cusp model was
superior to the linear model and the nonlinear logistic regression model. The cusp catastrophe model identified
interleukin-6 as a significant asymmetry factor and executive function as a significant bifurcation factor.

Conclusion: The cusp catastrophe model is a useful alternative for explaining the nonlinear relationships commonly seen
between health outcome and its predictors. Considerations for the use of cusp catastrophe model in nursing research
are discussed and recommended.
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he statisticalmodel used to examine a health outcome
T in nursing research is typically based on a linear re-
gression approach. However, the influence of environ-

mental, behavioral, psychological, or biological factors on health
outcomes are often complicated and nonlinear (Ray, 1998).
Small and inconsequential changes in predictive factors may
lead to abrupt changes in health outcomes. Under these con-
ditions, the linear approach would seriously limit knowing the
effects of factors hypothesized to be relevant to a health out-
come. Other natural extensions of the linear regression to
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incorporate nonlinearity are nonparametric regression methods,
such as the kernel regression or regression/smoothing splines
in low-dimensional scenarios. For high-dimensional data, tech-
niques such as the additive models, multivariate adaptive
regression splines, random forests, neural networks, and support
vector machine, etc., which have been discussed extensively in
Faraway (2006), are available. However, these nonparametric
regressions do not have the mechanisms to identify and incor-
porate “cusp jumps,”which are the fundamental advantages of
the cusp catastrophe models.

The cusp catastrophemodel is capable of handling complex
linear and nonlinear relationships simultaneously using a high-
order probability density function that has the advantage of
being able to incorporate sudden behavioral jumps (Zeeman,
1976). Historically, the cusp catastrophe model has been ap-
plied to prediction of health behaviors or system quality and
safety, such as attitudes and social behavior (Flay, 1978), therapy
and program evaluation (Guastello, 1982), accident processes
(Guastello, 1989), anxiety and performance (Hardy & Parfitt,
1991), cognitive development (van der Maas & Molenaar,
1992), selection of target behaviors (Bosch& Fuqua, 2001), ad-
olescent alcohol use (Clair, 1998), changes in adolescent sub-
stance use (Mazanov & Byrne, 2006), complexity of drinking
relapse (Witkiewitz & Marlatt, 2007), binge drinking among
college students (Guastello, Aruka,Doyle, & Smerz,, 2008), early
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sexual initiation among young adolescents (Chen et al.,
2010), nursing turnover (Wagner, 2010), and HIV prevention
(Chen, Stanton, Chen, & Li, 2013). The cusp catastrophemodel,
though, has seldom been applied to the understanding of
health outcomes, such as the incidence of a disease or changes
in a health condition where the nature can be extremely com-
plicated and dynamic. The goal of this article is to provide an
overview of the cusp catastrophe model, focusing on its appli-
cation in the examination of health outcomes. Such a method
can assist nurse researchers in taking the next steps in under-
standing themultifaceted nonlinear impact of different predictors
on health outcomes in a newway. Findings based on the cusp
catastrophe model may guide evaluation of outcomes from
interventions more effectively than other methods.

Overview of the Cusp Catastrophe Model

Popularized in the 1970s by Thom (1975), catastrophe theory
was originally proposed to explain complicated sets of behaviors
that include both continuous changes and sudden discontinuous
or catastrophical changes. Theoretically, five elements called
catastrophe flags define the presence of catastrophe (Gilmore,
1993): (a) bimodality, where two distinctly different modes ex-
ist in the distribution of the outcome; (b) sudden jump, where
the outcome changes abruptly between the modes even with
slight changes in the predictors; (c) inaccessibility, where an out-
come value in the area between themodes is unlikely; (d) hys-
teresis, where change from one mode to the other cannot be
determined by the same values for control factors; and (e) di-
vergence, where a slight change in the control factors can lead
to substantial change in the outcome and deviation from the
linear model. In summary, a cusp catastrophe model would be
particularly appropriate if am outcome measure has the
properties of a bimodal distribution (bimodality) with spurts
(sudden jump) along with a middle inaccessible region be-
tween two modes (inaccessibility) with delay between tran-
sitions (hysteresis) and deviation from a linear relationship
between the response outcome measure and the predictors
(divergence). Further definition and explanations are summa-
rized in Table 1.

Althoughcuspcatastrophemodelshavebeenwell established
theoretically and extensively applied to physical sciences, cusp
catastrophe models were criticized in the early 1970s in appli-
cations in social and behavior sciences partially because math-
ematics were misused, models were based on unreasonable
assumptions, and predictions were thought to be vague or im-
possible to test experimentally (e.g., Sussmann & Zahler, 1978,
p. 118), charges that were later reconsidered by Rosser (2007),
who argued for utility of the cuspmodeling approach for prob-
lems with dynamic discontinuities in outcomes. It is of interest
in nursing in part because it is associated with theories pro-
posed by Rogers (1971).

The deterministic cusp catastrophe model is specified us-
ing three components: two control factors (i.e., x and y) and
212 www.nursingresearchonline.com

Copyright © 2014 Wolters Kluwer Health | Lippincott Williams & 
one outcome variable (i.e., z). This model is defined by a differ-
ential equations-based dynamic system:

dz

dt
¼ � dV z; x; yð Þ

dz
(1)

where the potential function is

V z; x; yð Þ ¼ 1
4 z

4 � 1
2 z

2y� zx.

For the function V, the argument x is called asymmetry or
normal control factor where the outcome z changes asymmet-
rically from one mode to the other eventually as x increases,
y is called bifurcation or splitting control factor, which causes
the outcome surface to split and bifurcate from smooth changes
to sudden jumps as y increases. Both x and y are linked to de-
termine the outcome variable z in a three-dimensional outcome
response surface. When the right side of Equation 1 moves
toward 0, the outcome zwill not change with time. Such status
is called equilibrium; this assumption is needed to interpret cusp
models based on cross-sectional data. In general, the behavior
of the outcome z, that is, how it changeswith time t, is in general
complicated, but each subject will move toward an equilib-
rium status. Figure 1 graphically depicts the equilibrium plane,
which reflects the response surface of the outcomemeasure (z)
at various combinations of asymmetry control factor (x) and
bifurcation control factor (y).

Cusp catastrophemodels can be assessed qualitatively and
quantitatively. The qualitative approach (Gilmore, 1993) focuses
on identification of catastrophe flags. This study focuses on use
of the quantitative approach, called “stochastic cusp catastrophe
model.” The quantitative approach extends the deterministic
cusp model in Equation 1 by adding a probabilistic/stochastic
Wiener process to incorporate the measurement errors of the
outcomemeasurement. The response surface of the cusp catas-
trophemodel can bemodeled as a probability density function
where the bimodes of the outcome correspond to two states of
health outcome. Statistically, the deterministic cusp model in
Equation 1 is cast into a stochastic differential equation (Cobb,
1981; Cobb & Ragade, 1978; Cobb & Watson, 1980; Cobb &
Zacks, 1985) as follows:

dz ¼ @V z; x; yð Þ
@z

dt þ dW tð Þ (2)

where dW(t) is a white noiseWiener process with variances2,
which is in fact a special case of the general stochastic dynam-
ical systemmodel with constant diffusion function definedwith
dW(t) as a white noise Wiener process with variance s2. This
model is still mathematically complex, and the analytical solu-
tion to this stochastic differential equation in Equation 2 cannot
be obtained feasibly. Therefore, its computational implemen-
tation and real-life application to health outcomes research
are limited. However, as time (t) passes, the probability den-
sity function of the corresponding limiting stationary stochastic
May/June 2014 • Volume 63 • No. 3
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TABLE 1. Definitions of Key Terms

Term Definition

Cusp catastrophe model
(cusp model)

Catastrophe theory is a branch of bifurcation theory in the study of dynamical
systems to study phenomena characterized by sudden shifts in behavior
from small changes in circumstances where cusp catastrophe model is one of
the catastrophe models in this area as discussed in Zeeman (1976).

Asymmetry control factor In cusp model, there are two control factors to control the outcome response
surface where the asymmetry control factor is used to control the outcome
changes asymmetrically from onemode to the othermode eventually as it increases
as seen in Figure 1.

Bimodality of outcomes Human health or behavior outcomes, such as grip strength, nursing turnover
(Wagner, 2010), adolescent alcohol use (Clair, 1998), and adolescent
sex behavior (Chen et al. 2013), are often bimodally distributed.

Bifurcation control factor Similarly to the “Asymmetry control factor,” the bifurcation control factor controls
the outcome surface to split and bifurcate from smooth changes to sudden
jumps as it increases as seen in Figure 1.

Equilibrium Equilibrium is a state from the dynamic system in Equation 1 where the
outcome (z) does not change with time.

Potential function The potential function is a general technical term used in dynamic systems
models as a function to relate the outcome to any other control factors.

Inaccessibility A rare if not impossible intermediate state between two opposite behavior modes.
Sudden jump Outcomes change suddenly between the two modes with slight changes in the

bifurcation and asymmetry control factors close to the cusp region as
depicted in Figure 1.

Hysteresis The change of outcomes from onemode to the other is impossible to be determined
by the same value of bifurcation and asymmetry control factors where the
sudden jumps do not always occur at the same value of these control factors.

Divergence A slight change in the bifurcation control factor can lead to substantial change in
the outcome and two possible paths are available with increasing values
of the bifurcation control factor.

Wiener process In health outcome research, a real-time process where changes in the outcome
over an increment of time have a known normal distribution

Deviant to linear model Outcomes change paths from smooth linear mode to nonlinear with sudden jumps
as the bifurcation factor changes.
processes (i.e., equilibrium) is easier to obtain. More precisely, the
probabilitydensity functionof theoutcomemeasure (z) (Hartelman,
1997; Honerkamp, 1994) can be expressed as follows:

f zð Þ ¼ c
s2

exp
x z� lð Þ þ 1

2 y z� lð Þ2 � 1
4 z� lð Þ4

s2

" #
(3)

where the parameter c is a normalizing constant and l is
used to determine the origin of z. With this formulation of
probability density function, the regression predictors can be
incorporated as linear combinations to replace the canoni-
cal asymmetry factor (i.e., x) and bifurcation factor (i.e., y),
as shown in Equations 6 and 7. Note that, as a distribution
for a limiting stationary stochastic process, it is independent
from time t; thus, it can be used to model a cross-sectional re-
lationship with the advantage to detect and quantify its poten-
tial cusp nature comprising both sudden and continuous states.
With this probability density function, the well-known statistical
theory of maximum likelihood can be readily employed for
model parameter estimationand statistical inference. TheRpackage
“cusp” has been developed to implement the stochastic cusp ca-
tastrophemodel (Grasman, van der Mass, &Wagenmakers, 2009).
Nursing Research
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Potential usefulness of the cuspmodel can be illustrated by
fitting linear regression, nonlinear regression using a logistic
function, and cusp models and then comparing fit and inter-
pretability of the parameters. Comparatively smaller values of
the negative log-likelihood, associated likelihood ratio, chi-square
tests, Akaike Information Criterion (Akaike, 1974), andBayesian
Information Criterion (Gelfand &Dey, 1994) indicate better fit.
Higher pseudo-R2 values demonstrate higher explained variance
in the outcome and are interpreted as R2 in a linear regression.
In a cuspmodel, at least 10% of the control factor data pairs (x, y)
should lie within the bifurcation cusp region (Cobb, 1998;
Hartelman, 1997). Amore stringent alternative for this 10%guide-
linewas proposed by Hartelman (1997); Hartelman, van der
Maas, and Molenaar (1998); and van der Maas, Kolstein, and
van der Pligt (2003) to be a nonlinear least squares regression
with the logistic curve (thereafter referred to as “nonlinear lo-
gistic model”) as follows:

z ¼ 1

1þ e�x=y2
þ ε (4)

where (x,y,z) are defined in Equations 6–8 in the following sec-
tion for sample size N. This nonlinear logistic model has the
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advantage tomodel the steep changes in the outcome variable
to mimic the “sudden” transition in the cusp.

CUSP CATASTROPHE MODEL IN HEALTH AND
NURSING RESEARCH

As shown by publications cited earlier in the article, many
health outcomesmay satisfy the five criteria (catastrophe flags)
proposed in catastrophe theory. In clinical practice, for exam-
ple,many physical andmental health conditions (e.g., seizures,
cardiac arrest, stroke, depression, or bipolar disorders) have two
modes: normal versus abnormal (bimodality) and a low prob-
ability of “between area” beyond the twomodes (inaccessibility).

These health conditions also seem to suddenly jump from one
end to the other (sudden jump, as when a condition is diagnosed
based on severity). Often, relatively small changes in environ-
mental factors, biological and psychological status, or behaviors
can induce or trigger sudden and dramatic changes in the status
of health conditions (divergence), and the timing and direction
of these predictors would determine the incidence or sever-
ity of health outcome (hysteresis). For example, a small amount
of air entering the bloodstream may sometimes precipitate
stroke or cardiac arrest; yet, how often such adverse events oc-
cur depends on certain circumstances, such as the speed of
and location for injecting the air (Schottke, 2010).

FIGURE 1 Cusp catastrophe model for health outcome measures (z) in the equilibrium plane with asymmetry control variable (x) and bifurcation control
variable (y). The dynamic changes in z have two stable regions (attractors), which are the lower area in the front left (lower stable region) and the upper
areas in the front right (upper stable region). Beyond these stable regions, z becomes sensitive to changes in x and y. This unstable region can be projected
to the control plane (x, y) as the cusp region. The cusp region is characterized by line O–Q (the ascending threshold) and line O–R (the descending
threshold) of the equilibrium surface. In this region, z becomes highly unstable with regard to changes in x and y, jumping between the two stable regions
when (x, y) approaches the two threshold lines O–Q and O–R. In this figure, Paths A, B, and C depict three typical but different pathways of change in the
health outcomemeasure (z). Path A shows that in situations where y< 0, there is a smooth relation between z and x; Path B shows that in situations where y
> 0, if x increases to reach and pass the ascending threshold link O–Q, z will jump suddenly from the low stable region to the upper stable region of the
equilibrium plane; Path C shows a sudden drop in z as x declines to reach and pass the descending threshold line O–R.
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Statistically, compared to a linear regression and non-
linear logisticmodel in Equation 4, the advantages of applying a
cusp catastrophe model in studying health outcomes are as
follows:

1.The cuspmodel allows the forward and backward progres-
sion following different paths in health outcomes to be
modeled simultaneously (see Paths B and C in Figure 1),
whereas a linear model only permits one type of relation-
ship to be modeled;

2.The cuspmodel covers both a discrete component (normal
vs. abnormal) and a continuous component (the degree
of severity) of the health outcomes where the linear model
is a special case of this continuous component. The contin-
uous partmanifests the linear and gradual process (Path A),
and the discrete part characterizes the sudden and non-
linear process (Paths B and C). A linear model can only
capture the continuous part.

3. The cusp model consists of two stable regions and two
thresholdswhere sudden changes occur (upper and lower
regions in Figure 1). A linear model does not have these
features.
EXAMPLE

Relationships between executive function (EF), interleukin-6
(IL-6), and grip strength are used to demonstrate application of
the cusp catastrophe model to health outcomes. Grip strength
in adults is an indicator of physical functioning, especiallymus-
culature andweakness, and is a core component of frailty (Roberts
et al., 2011). Importantly, grip strength is a critical predictor of
hospitalization, independent living, and mortality (Landi et al.,
2013). Thus, there is growing interest in understanding determi-
nants of grip strength in adults. The following characteristics of
grip strength are consistent with the criteria for catastrophe flags:

1.Bimodality where there are two states—“sarcopenia/
impaired” versus “normal” or a continuous form of strength
(Cruz-Jentoft et al., 2010).

2. There is a low probability of accessing the intermediate
state of weakness between the “sarcopenia/impaired”
and “normal” mode (inaccessibility).

3. It is possible to reach the two states of grip strength by
increasing or decreasing certain physiological factors
(divergence).

4. Slight changes in individuals’ physiological factors may
cause a sudden jump between the two grip strength states
(Cruz-Jentoft et al., 2010).

5.The variability in physiological factors usually leads to dif-
ferent grip strength states (hysteresis).

Inflammation is known to have degrading effects on bone
and muscle mass. Such effects are thought to contribute to
Nursing Research
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muscle weakness by accelerating protein loss and contractile
dysfunction (Beyer et al., 2012). However, findings on the re-
lationship between proinflammatory cytokines, such as IL-6,
and grip strength have been inconsistent across studies (Payette
et al., 2003; Schaap, Pluijm,Deeg, &Visser, 2006).Muscle stength
depends in part on brain control, so the cognitive operation of
EF may interact with levels of inflammatory processes (indi-
cated by IL-6) to explain individual differences in grip strength
state (MacDonald, DeCarlo, & Dixon, 2011). Although the in-
teraction has been traditionally examined usingmultiple linear
regression analysis, the characteristics of grip strength de-
scribed above suggest that this condition could be analyzed
with the cusp catastrophe model to determine the impact of
IL-6 and EF. Thus, in the following cross-sectional design sec-
ondary data analysis, three models were compared: (a) multi-
ple linear regression, (b) nonlinear logistic model, and (c) the
cusp catastrophe model.

Data for this example were obtained from the second wave
of data on Survey of Midlife Development in the United States
(MIDUS II), an ongoing nationally representative longitudinal
survey data set. MIDUS II is the 10-year follow-up study of
MIDUS I (a longitudinal study of physical and psychological
health of adults in the United States). A total of 4,963 participants
from MIDUS I participated in demographic and psychobehav-
ioral assessments (i.e., MIDUS II Project 1), demonstrating a
75% retention rate adjusted for mortality. In addition, four
substudies were included in MIDUS II. Project 2 involved the
completion of daily dairies to track daily stressors; Project 3 in-
volved the assessment of cognitive functioning, Project 4 in-
volved the collection of biomarkers and physical assessments,
and Project 5 involved the completion of brain functioning ass-
essments. Institutional review board approval was obtained for
each study project at each study site, and informed written con-
sent was obtained from all participants (Dienberg Love, Seeman,
Weinstein, & Ryff, 2010). Data used in this example were from
MIDUS II Projects 3 and 4. MIDUS data set is under the category
of Interuniversity Consortium for Political and Social Research.
Therefore, the present secondary data analysis study did not re-
quire prior institutional review board approval. There were 935
participants who participated in both the cognition and bio-
marker projects and had complete data for inflammatory cyto-
kines, EF, and grip strength.

As described in Dienberg et al. (2010), five tests were used
to measure EF: (a) working memory span (digits backwards),
(b) verbal fluency (category fluency), (c) inductive reasoning
(number series), (d) processing speed (backward counting
from the Brief Tests of Adult Cognition by Telephone), and
(e) attention switching and inhibitory control from the Stop
and Go Switch Task. An average of z scores for all tests was
used as a composite score for EF in the data analysis (Lachman,
Agrigoroaei, Murphy, & Tun, 2010). IL-6 was measured using
Quantikine high-sensitivity enzyme-linked immunosorbent as-
saykits (R&DSystems,Minneapolis,MN).The laboratory intra-assay
www.nursingresearchonline.com 215

ilkins. Unauthorized reproduction of this article is prohibited.



coefficient of variancewas 13% for IL-6. Grip strengthwas assessed
using a handheld dynamometer. The average of three trials in the
dominant hand was used.

The average age of the sample was 58.15 (SD = 11.62,
range = 35–86). Around half were female (54.4%), and two
thirds graduated from high school (75.7%); 34.4% were tak-
ing antihypertensive, 12.4% were taking corticosteroid, and
14.8% were taking antidepressant; 11% of the participants
were active smokers, and 40.0% had alcohol intake at least
once a week.

To implement the cusp model, all covariates, including age,
gender, education, antidepressant, corticosteroids, antihypertension,
smoking, and alcohol intake, were adjusted to grip strength
using a linear regression. The adjusted grip strength (predic-
tive value) was then used in the cusp model as follows. The
multiple linear regression was simply defined as

Grip Strength ¼ β0þβ1 IL-6þβ2 EFþβ3 ðIL-6�EFÞ: (5)

To implement the cusp catastrophe model in Equation 2,
both the asymmetry control factor x and the bifurcation fac-
tor y as a linear combination of the predictor variables of EF
and IL-6 were initially defined as

x ¼ a0 þ a1 EFþ a2 IL-6 (6)

y ¼ b0 þ b1 EFþ b2 IL-6 (7)

where the intercept coefficients a0 and b0 link to the mean
effect of all predictor variables on the dependent variable
of grip strength (z) and other coefficients assess the independent
effects of these variables on grip strength (z). The dependent
TABLE 2. Parameter Estimates and Model Comp

Parameter

Model Name Est

Logistica a0: intercept coefficient for IL-6 0.
b0: slope coefficient for IL-6 1.
a1: intercept coefficient for EF −0.
b1: slope coefficient for EF −0.

Linearb b0: intercept coefficient 0.
b1: slope coefficient for IL-6 1.
b2: slope coefficient for EF 2.
b3: coefficient for IL-6 × EF interaction −0.

Cuspc,d a0: intercept coefficient for IL-6 0.
b0: intercept coefficient for EF 1.
w0: intercept coefficient for grip strength −4.
a1: slope coefficient for IL-6 −0.
b1 : slope coefficient for EF −0.
w1: slope coefficient for grip strength 0.

Note. AIC = Akaike Information Criterion; BIC = Bayesian Infor
LL = log-likelihood. aEquation 4. bEquation 5. cEquation 2.
variable x, and EF was used as the bifurcation variable y.

216 www.nursingresearchonline.com
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variable of health measure (z) is also defined as a linear
equation:

z ¼ w0 þ w1 Grip Strength (8)

where w0 and w1 represent the mean level and change in
health measure along with the two latent control variables
x and y defined above.

Table 2 shows the comparison between multiple linear
regression in Equation 5, the nonlinear logistic model in
Equation 4, and the cusp catastrophe model in Equation 2.
The linear regression is significant (p < .0001); if only the
multiple linear regression in Equation 5 had been estimated,
it would lead to the conclusion of a significant overall regression
model. By fitting the linear regression model, nonlinear logistic
model, and cusp models and comparing them, it was found that
the asymmetry control factor (x) was driven by IL-6 (EF had no
effect on asymmetry, the coefficient was nonsignificant) and
the bifurcation control factor (y) was driven by EF (the coefficient
for IL-6 was nonsignificant) as seen in Table 2.

First of all, the data fit the cusp model well (R2 = .79).
IL-6 as the only significant variable for the asymmetry control
factor was negatively associated with grip strength (a1 =
−0.1349, p < .01). EF as the only significant variable for the
bifurcation control factor was negatively associated with
greater grip strength (b1 = −0.1599, p < .05).

Comparatively, the cusp catastrophe model was supe-
rior to the linear model and the nonlinear logistic model;
values of the Akaike Information Criterion and Bayesian In-
formation Criterion model selection criteria were lowest for
the cusp model (Table 2). In addition, R2 increased from
.05 in the linear model in Equation 5 and .06 in the nonlinear
arison for Prediction of Grip Strength

Model Fit and Selection Criteria

imate p R2
−LL AIC BIC

528 .85 .06 3,408.11 6,826.22 2,332.73
000 <.001
057 <.001
115 .003
001 .99 .05 3,408.94 6,825.93 6,845.25
048 .02
313 <.001
162 .73
0004 .99 .79 1,145.84 2,303.68 2,332.73
770 <.001
8348 <.001
1349 <.001
1599 .01
1271 <.001

mation Criterion; EF = executive function; IL = interleukin;
dIL-6 cytokine value was used as the asymmetry control
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logistic model in equation 4 to .79 in the cusp catastrophe
model in Equation 2.

The distribution of the grip strength scores and model
residuals were also examined (see Figure 2). The distribu-
tion of grip strength was not normal, and there were two
distinct modes at grip strength values of about 28 and 48
(Figure 2A). The residual plot from the linear regression
(Figure 2B) revealed a nonnormal distribution ranging from
−20 to 20, indicating that the linear regression assumption
of normally distributed residuals was violated. If the results
from the linear regression were interpreted, erroneous con-
clusions would be reported. Differently, the residual plot from
the cusp model (Figure 2C) is normally distributed and ranges
from −2 to 2.

In summary, the cusp catastrophe model showed better
data-model fit as seen in Table 2 and especially captured the
data heterogeneity as shown in Figure 2 in comparison with
the classical linear and nonlinear logistic model. Results of
the analysis supported the conclusion that the cusp catastro-
phe modeling method was superior to the traditional linear
and nonlinear approaches in characterizing the nonlinear
changes in grip strength, assuming a dynamic system at equi-
librium. Plotting the data distribution of grip strength revealed
two modes: “strength”/“normal” versus “weak”/“sarcopenia.”
In general, there was a negative association between IL-6 and
grip strength, suggesting that the grip strength was stronger
for patients with less severe inflammation (lower IL-6) and
FIGURE 2 Distribution plots: (A) grip strength, (B) residuals from linear mo
normal distribution, and the solid lines are from the nonparametric spline-sm

Nursing Research
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weaker for patients with more severe inflammation (higher IL-6).
However, this relationship took two modes, depending on
the levels of EF.When EF is at its higher levels, the negative as-
sociation between IL-6 and grip was gradual and continuous
(Path A in Figure 1). When EF was low, the relationship be-
tween IL-6 and grip strength became complicated: (a) EF may
interact with low degrees of IL-6 to maintain strong grip strength,
shown in the upper stable region in Figure 1; (b) EFmay become
dysfunctional with high grades of IL-6, resulting in comprised
grip strength as shown in the lower stable region in Figure 1;
and (c) as IL-6 level varied across the region of the bifurcation
set, suddendeterioration or improvement of grip strengthwas in-
ducible in response to even subtle changes in IL-6 (Paths B andC
in Figure 1).

DISCUSSION

In this research, the cusp catastrophe model was introduced
with an example that characterizes the potential dynamic pro-
cess of psychological (i.e., EF) and biological (e.g., IL-6) fac-
tors in affecting the functional health outcome of grip strength.
The goodness-of-fit model and residuals both supported applica-
tion of this cusp catastrophe model when compared to a linear
regression model and nonlinear logistic regression model. As
evidenced in the example, the cusp catastrophe model may be
superior to linear and nonlinear logistic regression models for
quantifying discontinuous and bimodal health outcomes in nurs-
ing research. Preliminary assessment of data for detection of cusp
del, and (C) residuals from cusp model. The dashed lines indicate the
ooth based on the data.
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catastrophes using Gilmore’s (1993) five essential elements
of bimodality, sudden jump, inaccessibility, hysteresis, and di-
vergence, called catastrophe flag detection should be under-
taken before fitting cusp models. When the cusp model seems
plausible, parameters of a stochastic cusp catastrophe model
can be estimated and used to identify asymmetry and bifurcation
control factors. Compared to alternatives such as linear and non-
linear logistic models, the cusp model strengthens the overall
approach, linking the health outcome to its predictors.

Applying a dynamic analysis using catastrophe theory
may increase the ability to select and deliver interventions
to address health outcomes by targeting specific combina-
tions of risk factors. Patient-centered caremay be incorporated
more effectively into evidence-based practice. Adults who ex-
perience adverse health conditions, especially the older adults,
may lack energy to manage multiple tasks/treatments simulta-
neously. It is important to identify the targets with highest pri-
ority, and to deliver the most effective treatment in a timely
manner. To reach all these goals requires a dedicated plan to
tailor the evidence-based practice to the characteristics of the
individual.

Taking the grip strength case as an example, anti-inflammatory
therapy and physical exercise (e.g., resistance training) are
common evidence-based treatments for improving muscle
strength (Beyer et al., 2011; Geirsdottir et al., 2012). Neverthe-
less, to maximize the treatment effect, individual differences,
which is patient centeredness, should be taken into consider-
ation. In this case, the patient centeredness indicator is cognitive
function, particularly EF. For those individuals with relatively
high levels of EF, traditional treatments (e.g., anti-inflammation
medication, physical exercises) that potentially mitigate inflam-
matory activation should be the priority for maintaining muscle
strength. Whereas, for individuals with compromised EF, anti-
inflammatory treatment and improvement of EF are equally
critical to achieve sudden improvement in grip strength. Im-
provement of EF is possibly achieved by using cognitive mod-
ification strategies (e.g., physically, mentally, socially active
lifestyle, and healthy diet; Middleton & Yaffe, 2010). Given
the possibility of a dramatic deterioration of muscle strength
from inflammatory activation for those with low EF, it is also
important to recognize that preventing inflammatory conditions
and continuously monitoring relevant risk factors (e.g., blood
sugar, weight; Kantor, Lampe, Kratz, & White, 2013) should be
implemented on a regular basis—especially for those at risk for
inflammatory diseases (e.g., older age, vascular risk; Puntmann,
Taylor, & Mayr, 2011).

There are some limitations to this study. Despite the
strength of themodeling approach used in this study to quantify
the cusp dynamic process, it is a cross-sectional model because
of the mathematical challenge to obtain analytical solution to
the time-dependent (i.e., longitudinal) stochastic differential
equation in Equation 2. As a trade-off to this theoretical chal-
lenge, a time-independent special case was adopted, which
218 www.nursingresearchonline.com
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is nowwidely used in cusp catastrophemodeling as discussed
inGrasman et al. (2009). Although this time-independent cusp
catastrophe model is suitable for cross-sectional data from
health outcomes research, it cannot be used to capture the
within-individual changes over time. Statistical methods for
longitudinal cusp catastrophe modeling are not available at
the point when this study was completed. Likewise, the lack
of methodologies to estimate the threshold lines and cusp
regions for stochastic cusp modeling prevented us from quan-
tifying these two model parameters. Despite these limitations,
cusp catastrophe modeling is a useful technique to model the
nonlinear relationship between the health outcome and its
associated behavioral, psychological, cognitive, or biologi-
cal predictors, capturing continuous and discontinuous changes
in the health outcome. Nursing researchers may choose to utilize
the cusp catastrophe model to examine the complex nonlinear
process that is related to health outcomes over traditional linear
techniques. In further research, the cusp catastrophe model will
be extended to examine longitudinal data by incorporating the
temporal correlation and develop the statistical power analysis
strategies for thismodel aswell as develop a statistical framework
to determine the thresholds for cusp regions.

Accepted for publication December 26, 2014.

This research was supported in part by three NIH grants from the National
Institute on Drug Abuse (NIDA, R01 DA022730, PI: X. Chen), the Eunice
Kennedy Shriver National Institute of Child Health and Human Develop-
ment (NICHD, R01HD075635, PIs: X. Chen andD. Chen), andUniversity
of Rochester CTSA Award Number KL2 TR000095 from the National
Center for Advancing Translational Sciences (PI: Lin). We thank the two
anonymous reviewers for their comments and suggestions, which signifi-
cantly improved this manuscript.

Ding-Geng Chen and Feng Lin contributed equally to this article.

The authors have no conflicts of interest to report.

Corresponding author: Ding-Geng (Din) Chen, PhD, School of Nursing
and Department of Biostatistics and Computational Biology, University of
Rochester Medical Center, 601 Elmwood Ave, Box SON, Rochester, NY
14642 (e-mail: DrDG.Chen@gmail.com).

REFERENCES
Akaike, H. (1974). A new look at the statistical model identifica-

tion. IEEE Transactions on Automatic Control, 19, 716–723.
doi: 10.1109/TAC.1974.1100705

Beyer, I., Bautmans, I., Njemini, R., Demanet, C., Bergmann, P., &
Mets, T. (2011). Effects on muscle performance of NSAID treat-
ment with Piroxicam versus placebo in geriatric patients with
acute infection-induced inflammation. A double blind randomized
controlled trial.BMCMusculoskeletal Disorders, 12, 292. doi: 10
.1186/1471-2474-12-292

Beyer, I., Njemini, R., Bautmans, I., Demanet, C., Bergmann, P., &
Mets, T. (2012). Inflammation-related muscle weakness and fa-
tigue in geriatric patients. Experimental Gerontology, 47, 52–59.
doi:10.1016/j.exger.2011.10.005

Bosch, S., & Fuqua, R. W. (2001). Behavioral cusps: A model for
selecting target behaviors. Journal of Applied Behavior Analy-

sis, 34, 123–125. doi: 10.1901/jaba.2001.34-123
May/June 2014 • Volume 63 • No. 3

Wilkins. Unauthorized reproduction of this article is prohibited.

mailto:DrDG.Chen@gmail.com


Chen, X., Lunn, S., Harris, C., Li, X., Deveaux, L., Marshall, S., . . .
Stanton, B. (2010). Modeling early sexual initiation among
young adolescents using quantum and continuous behavior
change methods: Implications for HIV prevention. Nonlinear
Dynamics, Psychology, and Life Sciences, 14, 491–509.

Chen, X., Stanton, B., Chen, D., & Li, X. (2013). Intention to use
condom, cusp modeling, and evaluation of an HIV prevention
intervention trial. Nonlinear Dynamics, Psychology, and Life

Sciences, 17, 385–403.

Clair, S. (1998). A cusp catastrophe model for adolescent alcohol
use: An empirical test. Nonlinear Dynamics, Psychology, and

Life Sciences, 2, 217–241. doi: 10.1023/A:1022376002167

Cobb, L. (1981). Parameter estimation for the cusp catastrophemodel.
Behavioral Science, 26, 75–78. doi: 10.1002/bs .3830260107

Cobb, L. (1998). An introduction to cusp surface analysis. Tech. Rep.
Louisville, CO: Aetheling Consultants. Retrieved from http://www
.aetheling.com/modes/cusp/Intro.htm

Cobb, L., & Ragade, R. K. (1978). Applications of catastrophe theory
in the behavioral and life sciences. Behavioral Science, 23(5), i.
doi: 10.1002/bs.3830230511

Cobb, L., & Watson, B. (1980). Statistical catastrophe theory: An
overview. Mathematical Modelling, 1, 311–317. doi: 10.1016/
0270-0255(80)90041-X

Cobb, L., & Zacks, S. (1985). Applications of catastrophe theory for
statistical modeling in the biosciences. Journal of the American

Statistical Association, 80, 793–802. doi: 10.1080/01621459.1985
.10478184

Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T.,
Landi, F., . . . Zamboni, M. (2010). Sarcopenia: European consensus
on definition and diagnosis: Report of the Europeanworking group
on Sarcopenia in older people. Age and Ageing, 39, 412–423. doi:
10.1093/ageing/afq034

Dienberg, Love, G., Seeman, T. E., Weinstein, M., & Ryff, C. D.
(2010). Bioindicators in the MIDUS national study: Protocol,
measures, sample, and comparative context. Journal of Aging
and Health, 22, 1059–1080. doi: 10.1177/0898264310374355

Faraway, J. J. (2006). Extending the linearmodel with R: Generalized

linear mixed-effects and nonparametric regressionmodels. Boca
Raton, FL: Chapman and Hall/CRC.

Flay, B. R. (1978). Catastrophe theory in social psychology: Some ap-
plications to attitudes and social behavior. Behavioral Science,
23, 335–350. doi: 10.1002/bs.3830230404

Geirsdottir, O. G., Arnarson, A., Briem, K., Ramel, A., Tomasson, K.,
Jonsson, P. V., & Thorsdottir, I. (2012). Physical function predicts
improvement in quality of life in elderly Icelanders after 12weeks
of resistance exercise. Journal of Nutrition, Health & Aging, 16,
62–66. doi: 10.1007/s12603-011-0076-7

Gelfand, A. E., & Dey, D. K. (1994). Bayesian model choice:
Asymptotics and exact calculations. Journal of the Royal Sta-

tistical Society. Series B (Methodological), 56, 501–514.

Gilmore, R. (1993). Catastrophe theory for scientists and engineers.
New York, NY: Dover Publications.

Grasman, R. P. P. P., van der Mass, H. L. J., & Wagenmakers, E.-J.
(2009). Fitting the cusp catastrophe in R: A cusp package primer.
Journal of Statistical Software, 32, 1–28.

Guastello, S. J. (1982). Moderator regression and the cusp catastro-
phe: Application of two-stage personnel selection, training,
therapy and program evaluation. Behavioral Science, 27,
259–272. doi: 10.1002/bs.3830270305

Guastello, S. J. (1989). Catastrophe modeling of the accident pro-
cesses: Evaluation of an accident reduction program using the
Occupational Hazards Survey. Accident Analysis & Prevention,
21, 61–77. doi: 10.1016/0001-4575(89)90049-3
Nursing Research

Copyright © 2014 Wolters Kluwer Health | Lippincott Williams & W
Guastello, S. J., Aruka, Y., Doyle, M., & Smerz, K. E. (2008). Cross-
cultural generalizability of a cusp catastrophe model for binge
drinking among college students. Nonlinear Dynamics, Psy-

chology, and Life Sciences, 12, 397–407.

Hardy, L., & Parfitt, G. (1991). A catastrophe model of anxiety and
performance. British Journal of Psychology, 82, 163–178. doi:
10.1111/j.2044-8295.1991.tb02391.x

Hartelman, P. (1997). Stochastic catastrophe theory. Amsterdam,
the Netherlands: University of Amsterdam.

Hartelman, P. A. I., van der Maas, H. L. J., &Molenaar, P. C. M. (1998).
Detecting and modelling developmental transitions. British Jour-

nal of Developmental Psychology, 16, 97–122. doi: 10.1111/
j.2044-835X.1998.tb00751.x

Honerkamp, J. (1994). Stochastic dynamical system: Concepts, nu-

mericalmethods, data analysis. NewYork, NY: VCH Publishers.

Kantor, E. D., Lampe, J. W., Kratz, M., & White, E. (2013). Lifestyle
factors and inflammation: associations by body mass index.
PLoS One, 8(7), e67833. doi: 10.1371/journal.pone.0067833

Lachman, M. E., Agrigoroaei, S., Murphy, C., & Tun, P. A. (2010).
Frequent cognitive activity compensates for education differences
in episodic memory. American Journal of Geriatric Psychiatry,
18, 4–10. doi: 10.1097/JGP.0b013e3181ab8b62

Landi, F., Cruz-Jentoft, A. J., Liperoti, R., Russo, A., Giovannini, S.,
Tosato, M., . . . Onder, G. (2013). Sarcopenia and mortality risk in
frail older persons aged 80 years and older: Results from ilSIRENTE
study. Age and Ageing, 42, 203–209. doi: 10.1093/ageing/
afs194

MacDonald, S. W. S., DeCarlo, C. A., & Dixon, R. A. (2011). Linking
biological and cognitive aging: Toward improving characteri-
zations of developmental time. Journals of Gerontology Series B:

Psychological Sciences and Social Sciences, 66B, i59–i70.
doi: 10.1093/geronb/gbr039

Mazanov, J., & Byrne, D. G. (2006). A cusp catastrophe model anal-
ysis of changes in adolescent substance use: Assessment of
behavioural intention as a bifurcation variable. Nonlinear Dy-

namics, Psychology, and Life Sciences, 10, 445–470.

Middleton, L. E., & Yaffe, K. (2010). Targets for the prevention of
dementia. Journal of Alzheimer’s Disease, 20, 915–924. doi:
10.3233/JAD-2010-091657

Payette, H., Roubenoff, R., Jacques, P. F., Dinarello, C. A., Wilson,
P. W. F., Abad, L. W., & Harris, T. (2003). Insulin-like growth
factor-1 and interleukin 6 predict sarcopenia in very old com-
munity-living men and women: The Framingham heart study.
Journal of American Geriatrics Society, 51, 1237–1243. doi:
10.1046/j.1532-5415.2003.51407.x

Puntmann, V. O., Taylor, P. C., & Mayr, M. (2011). Coupling vascu-
lar and myocardial inflammatory injury into a common pheno-
type of cardiovascular dysfunction: systemic inflammation and
aginga mini-review. Gerontology, 57, 295–303. doi: 10.1159/
000316577

Ray, M. A. (1998). Complexity and nursing science. Nursing Science
Quarterly, 11, 91–93. doi: 10.1177/089431849801100302

Roberts, H. C., Denison, H. J., Martin, H. J., Patel, H. P., Syddall, H.,
Cooper, C., & Sayer, A. A. (2011). A review of the measurement
of grip strength in clinical and epidemiological studies: To-
wards a standardised approach. Age and Ageing, 40, 423–429.
doi: 10.1093/ageing/afr051

Rogers, M. E. (1971). An introduction to the theoretical basis of
nursing. American Journal of Nursing, 71, 2026–2027.

Rosser, J. B. Jr. (2007). The rise and fall of catastrophe theory
applications in economics: Was the baby thrown out with the
bathwater? Journal of Economic Dynamics and Control, 31,
3255–3280. doi: 10.1016/j.jedc.2006.09.013
www.nursingresearchonline.com 219

ilkins. Unauthorized reproduction of this article is prohibited.

http://www.aetheling.com/modes/cusp/Intro.htm
http://www.aetheling.com/modes/cusp/Intro.htm


Schaap, L. A., Pluijm, S. M. F., Deeg, D. J. H., & Visser, M. (2006).
Inflammatory markers and loss of muscle mass (sarcopenia) and
strength. American Journal of Medicine, 119, e526.e9–e526.e17.
doi: 10.1016/j.amjmed.2005.10.049

Schottke, A. D. (2010). Emergency medical responder: Your first

response in emergency care. Burlington, VT: Jones & Bartlett.

Sussmann, H. J., & Zahler, R. S. (1978). Catastrophe theory as ap-
plied to the social and biological sciences: A critique. Synthese,
37, 117–216. doi: 10.1007/BF00869575

Thom, R. (1975). Structural stability and morphogenesis: An

outline of a general theory of models. New York, NY: W. A.
Benjamin.

van der Maas, H. L. J., Kolstein, R., & van der Pligt, J. (2003). Sudden
220 www.nursingresearchonline.com

Copyright © 2014 Wolters Kluwer Health | Lippincott Williams & 
transitions in attitudes. Sociological Methods & Research, 32,
125–152. doi: 10.1177/0049124103253773

van der Maas, H. L., & Molenaar, P. C. (1992). Stagewise cognitive
development: An application of catastrophe theory. Psycholog-
ical Review, 99, 395–417. doi: 10.1037/0033-295X.99.3.395

Wagner, C. M. (2010). Predicting nursing turnover with catastro-
phe theory. Journal of Advanced Nursing, 66, 2071–2084.
doi: 10.1111/j.1365-2648.2010.05388.x

Witkiewitz, K., & Marlatt, G. A. (2007). Modelling the complexity of
post-treatment drinking: It’s a rocky road to relapse. Clinical Psy-
chology Review, 27, 724–738. doi: 10.1016/j.cpr.2007.01.002

Zeeman, E. C. (1976). Catastrophe theory. Scientific American,
234, 65–83. doi: 10.1038/scientificamerican0476-65
May/June 2014 • Volume 63 • No. 3

Wilkins. Unauthorized reproduction of this article is prohibited.


	This link is ec></sec></body><back><fn-group><fn id=
	This link is ec></sec></body><back><fn-group><fn id=
	This link is ec></sec></body><back><fn-group><fn id=
	This link is ec></sec></body><back><fn-group><fn id=



