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Life history (LH) strategies refer to the pattern of allocations of bioenergetic and material

resources into different domains of fitness. While LH is known to have moderate to

high population-level heritability in humans, both at the level of the high-order factor

(Super-K) and the lower-order factors (K, Covitality, and the General Factor of Personality),

several important questions remain unexplored. Here, we apply the Continuous

Parameter Estimation Model to measure individual genomic-level heritabilities (termed

transmissibilities). These transmissibility values were computed for the latent hierarchical

structure and developmental dynamics of LH strategy, and demonstrate; (1) moderate

to high heritability of factor loadings of Super-K on its lower-order factors, evidencing

biological preparedness, genetic accommodation, and the gene-culture coevolution

of biased epigenetic rules of development; (2) moderate to high heritability of the

magnitudes of the effect of the higher-order factors upon their loadings on their

constituent factors, evidencing genetic constraints upon phenotypic plasticity; and (3)

that heritability of the LH factors, their factor loadings, and the magnitudes of the

correlations among factors, are weaker among individuals with slower LH speeds. The

results were obtained from an American sample of 316 monozygotic (MZ) and 274

dizygotic (DZ) twin dyads and a Swedish sample of 863 MZ and 475 DZ twin dyads,

and indicate that inter-individual variation in transmissibility is a function of individual

socioecological selection pressures. Our novel technique, opens new avenues for

analyzing complex interactions among heritable traits inaccessible to standard structural

equation methods.
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Introduction

The purpose of this paper is threefold: (1) to introduce the
use of the Continuous Parameter Estimation Method (CPEM)
to enable the estimation of genomic-level heritabilities, which
we call individual transmissibilities, in population-representative
samples from Sweden and the USA; (2) to apply this method
to estimate the aggregate heritabilities of the upper two strata
of the hierarchically-organized latent structure of Life History
(LH) strategy; and (3) to extend this method further to estimate
the heritabilities of the dynamics of Strategic Differentiation-
Integration Effort (SD-IE) that have been previously documented
among the different levels of the latent LH hierarchy (Figueredo
et al., 2013b). Although the second objective has already been
achieved by more conventional means (see Figueredo et al., 2004;
Figueredo and Rushton, 2009), the third objective is not attain-
able without the novel method used to perform the first objec-
tive. Executing the second step, however, determines whether this
novel method performs as expected in approximating the results
previously achieved by more traditional means.

Life History Theory: An Overview
Life history theory describes the pattern of allocations of mate-
rial and bioenergetic resources into different domains of fitness in
response to levels of environmental stability, extrinsic morbidity-
mortality, and population density (Ellis et al., 2009). Mammalian
life history strategies in general, including human ones, cohere
into a continuum that varies from fast to slow (Promislow and
Harvey, 1990; Ellis et al., 2009; van Schaik and Isler, 2012).
Faster life history strategies are characterized by rapid ontoge-
netic development, early reproduction, high mating effort, and
slower life history strategies are by comparison characterized by
more parental effort, community building, and greater longevity
(MacArthur and Wilson, 1967; Pianka, 1970; Rushton, 1985).

The latent structure of life history strategy was first extended
by Rushton (1985) to encompass additional psychosocial traits
in human populations, including a theoretically-specified pro-
file of personality traits (see Figueredo et al., 2013a). This latent
structure was later found to be hierarchically organized, with a
higher-order factor, termed Super-K, at the apex of this hierar-
chy (Figueredo et al., 2004, 2007; Figueredo and Rushton, 2009).
By analogy with the three stratum theory of human intelligence
(Carroll, 1993, 1997), this apex can be designated Stratum III.
Stratum II is populated by at least three lower-order factors so
far identified: (1) the K-Factor, which relates to various mea-
sures of altruistic dispositions toward family of origin, long-term
pair-bonding, parental investment, nepotism toward extended
kin, altruism toward the community, and an orientation toward
conventional religious piety (Figueredo et al., 2004, 2007); (2)
the Covitality Factor, which relates to manifestations of physical
and mental health which are in turn an outcome of higher lev-
els of somatic effort (Weiss et al., 2002; Figueredo et al., 2004,
2007); and (3) the General Factor of Personality, or GFP for short,
underlying the conventional personality dimensions, such as the
“Big Five” personality traits, collectively forming a global mea-
sure of prosocial orientation and social efficacy (Figueredo et al.,
2004, 2007; Musek, 2007; Rushton and Irwing, 2011). Stratum I

is populated by a variety of more narrowly focused psychomet-
ric scales measuring domain-specific resource allocations within
these broader common factors. This three-stratum hierarchy of
latent life history traits is depicted graphically in Figure 1.

Strategic Differentiation-Integration Effort
The two fundamental requirements for a robust science of life
history evolution are (i) methods of measuring heritable vari-
ation in life history traits within populations, and (ii) a theory
describing how the variation in life history traits evolves (Lande,
1982). Advances on these fronts are facilitated by better under-
standing of the phenotypic and genetic associations between
life history related sources of phenotypic variance. Consistent
with this, it has been demonstrated that the phenotypic corre-
lations among life history traits are stronger among individuals
(and groups) exhibiting faster life histories than among those
with slower ones. This phenomenon has been termed strategic
differentiation-integration effort (SD-IE), and has been consis-
tently demonstrated in various samples at the level of both indi-
vidual (Figueredo et al., 2013b) and group differences (Fernandes
and Woodley, 2013; Armstrong et al., 2014; Dunkel et al., 2014;
Woodley and Fernandes, 2014; Woodley et al., 2014). Slower
life histories appear to be more differentiated among themselves,
possibly due to environmental predictability and heightened
social competition at the carrying capacity during their evolu-
tion, which theoretically encourages specialization into various
stable socio ecological micro-niches through intraspecific charac-
ter displacement (Woodley, 2011; Figueredo et al., 2013b). Con-
versely, individuals and groups exhibiting comparatively faster
life histories appear to be more similar among themselves, as they
exhibit generalized tactics and need to be able to contingently
switch between socio ecological micro-niches that are insuffi-
ciently stable for specialization—a common feature of an evo-
lutionary ecology where the environmental stability is expected
to be low (Woodley, 2011; Figueredo et al., 2013b). In Figure 1,
the curved, single-headed arrows going from the latent common
factors to the straight, single-headed arrows connecting those
with their manifest indicators (i.e., the factor loadings) represent
the moderating SD-IE effects, and have been found to be gen-
erally negative in direction (i.e., the strength of the associations
weaken as the level of the latent trait increases), with only a few
theoretically-expected exceptions.

Also important to SD-IE are the concepts of preparedness
and plasticity (Figueredo et al., 2006). The former represents the
degree to which an organism is genetically predisposed toward
a particular developmental trajectory, whereas the latter consti-
tutes the degree to which gene-environment interaction induced
phenotypic changes during development may alter that prepared
trajectory. Both of these principles relate directly to the con-
cepts of genetic accommodation (West-Eberhard, 2003), which
encompasses that of genetic assimilation (Waddington, 1953). It
has been argued that, just as selection can favor the predispo-
sition toward a particular developmental trajectory in ontogeny
under conditions where this confers increased fitness, certain
selection regimes might instead confer fitness on the ability to
generate a highly plastic but persistent phenotype, where differ-
ent phenotypes can be developed by the same genotype under
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FIGURE 1 | The hierarchically-organized latent structure of life history traits.

different but stable ecologies. Depending on the rate of environ-
mental variability over time, a shorter-term form of plasticity,
called flexibility, describes the capacity for an organism to alter-
nate rapidly between different micro-niches, rather than special-
ize in one. Flexible strategies predispose toward generalist, rather
than specialist phenotypes that can be strategically deployed
across a wide range of environments. As with biological pre-
paredness, developmental plasticity and behavioral flexibility are
also ultimately genetically influenced, and subject to the selective
pressures of genetic accommodation (including assimilation) of
environmentally-triggered phenotypic changes during develop-
ment. For easy reference, a Glossary (see Supplementary Mate-
rial) of technical terms that have been used throughout this paper
has been assembled.

In terms of SD-IE theory, those individuals that are higher
on strategic differentiation effort (who exhibit slower life history
and are higher-K strategists) are likely to be more phenotypically
plastic when compared with those higher on strategic integration
effort (who exhibit faster life history and are lower-K strategists),
who should be more phenotypically flexible. Those higher on K
should also be less phenotypically prepared compared with those
lower on K, who exhibit faster maturational rates and receive

relatively much less parental and nepotistic investment. Low-K
individuals must therefore be prepared for high flexibility early in
life with respect to tactics that can be differentially deployed con-
tingent upon the immediate environment encountered. Levels of
phenotypic preparedness might be less consistent among high-K
populations where selection is more uniformly directional with
respect to the occupation of specific micro-niches, rather than
diversifying with respect to diverse micro-niches. Under those
more stable conditions, preparedness is expected to be more her-
itable and higher, although this will be traded off against a lower
amount of shorter-term flexibility, allowing individuals to pass
on highly genetically assimilated social roles across generations.
This might be interpreted as the ongoing evolution in humans of
what are comparable in some ways to eusocial insect polyethisms
(behaviorally specialized “castes”), which also appear to be con-
trolled by a combination of genetic and epigenetic influences
(Cahan et al., 2010; Lo et al., 2010; Patalano et al., 2012).

SD-IE among humans has been corroborated with many
latent and outcome variables comprising the life history con-
tinuum: these include the behavioral and cognitive indicators
in the Arizona Life History Battery (ALHB; collectively measur-
ing the K-Factor), various personality dimensions, measures of
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physical and mental health (Figueredo et al., 2013b), and at the
group-differences level, fertility, longevity, infant mortality, cra-
nial capacity, crime rate indicators, economic indicators, over-
all life satisfaction, prevalence of sexually transmitted diseases,
skin reflectance, divorce rate, and height (Fernandes and Wood-
ley, 2013; Armstrong et al., 2014; Woodley and Fernandes, 2014;
Woodley et al., 2014). However, the genetic characteristics and
consequences of SD-IE have not yet been explored, which leaves
various important questions unanswered: For example, is the
SD-IE effect heritable?

Predictions
On the basis of the aforementioned open research question, four
testable predictions have been formulated which will be explored
using two large and demographically representative samples of
twins sourced from the US and Sweden:

Prediction 1: Individual differences in the degree of biologi-
cal LH preparedness (Figueredo et al., 2006), i.e., the degree to
which a population might be predisposed (or prepared) toward
developing a particular specialized set of life history traits, are
partly heritable. Individual differences in biological prepared-
ness may have been shaped by a variety of related evolutionary
pressures, such as those relating to genetic accommodation
(West-Eberhard, 2003), and also biased epigenetic rules of
development, which may stem from gene-culture co-evolution
(Lumsden and Wilson, 1983).

Prediction 2: The individual differences-level SD-IE effects
themselves, which as in previous work, are defined as the effect of
the level of the higher-order life history factor upon its loadings
on the lower-order factors, will be heritable, evidencing the prin-
ciple of genetic constraints upon phenotypic plasticity (Wadding-
ton, 1953; Lumsden and Wilson, 1983; West-Eberhard, 2003).
Estimating the heritability of SD-IE is equivalent to estimating
the heritability of the aforementioned continuum of plasticity
vs. flexibility.

Prediction 3: The higher-order life history factor (Super-K), as
well as its lower-order factors, will be less heritable among slower
than among faster LH strategists. This follows on from the obser-
vation made in previous work that the SD-IE effect appears to
be most pronounced on measures of life history that are more
strongly correlated with K than those that are less so (Figueredo
et al., 2013b). Put more simply, when a LH component disag-
gregates at higher levels of the Super-K factor (i.e., when strate-
gic differentiation occurs), the effect is biggest on those com-
ponents that load more strongly on the heritable latent factors.
This weakening of these correlations should therefore attenuate
the heritability of LH among those who are most strategically
differentiated, i.e., those highest on the latent factors.

Prediction 4: It has been demonstrated that weaker
intergenerational mobility prevails in Sweden compared to
North-American countries in terms of skills and expertise
(Western and Wright, 1994), and that Swedes exhibit relatively
high status persistence across surname generations (Clark et al.,
2013). Therefore the Swedish sample should exhibit higher levels
of heritability across traits relative to the American sample,
evidencing a greater degree of assimilation of individuated life
history strategies.

Methods

Samples of Participants
Sample 1 was comprised of a nationally-representative subsam-
ple of 316 dyads of monozygotic (MZ) twins and 274 dyads
of same-sex dizygotic (DZ) twins (ages 25–74) from Wave 1
(1995–1996) of the Survey of Midlife Development in the United
States (MIDUS; Brim et al., 2000), on which previous life history
(LH) analyses had been performed (Figueredo et al., 2004, 2007;
Figueredo and Rushton, 2009). The MIDUS Survey consisted of
a telephone interview and two follow-up mail surveys given to
a nationally representative sample, collected in two longitudi-
nal data collection waves, the first wave over a one year period
from 1995–1996 (n = 7108), and the second wave over a 2
year period from 2004–2006 (n = 4963). This sample was lim-
ited to English speakers in the United States between the ages of
25–74 (at Wave 1) and 35–86 (at Wave 2), and contained data
on singletons (non-twins) as well as on a genetically informative
sample of same-sex MZ and DZ twins pairs. The MIDUS data
were used with written permission from the MIDUS program,
obtained through their web site (http://www.midus.wisc.edu/).
The use of this archival data was also approved by the Institu-
tional Review Board of the University of Arizona, Office for the
Responsible Conduct of Research, Human Subjects Protection
Program (http://orcr.arizona.edu/hspp).

Sample 2 was comprised of a sample of Swedish Twins, on
which a similar selection of LH-related variables were available.
The data were collected from a large sample of twins from the
Swedish Twins Registry (STR)—the STAGE cohort (Lichtenstein
et al., 2002) with approximately 32,000 twins born between 1959
and 1985. Zygosity was determined by questions about intra-
pair similarities and was subsequently confirmed in 27% of the
twins in the STR using genotyping. For further details on the
STAGE cohort and zygosity determination in the STR see Licht-
enstein et al. (2002, 2006). Data collection was conducted via
web-survey. An invitation was sent via surface mail to ∼32,000
twins, 11,543 of whom completed at least one instrument in a
web questionnaire via the Internet. The final sample used in the
present study, after multiple imputation for missing data, con-
tained 863 MZ and 475 same-sex DZ twin pairs. Use of this
sample was approved by the Regional Ethics Review Board in
Stockholm. Each participant provided written consent.

Measures
The measures used in the analyses involving the MIDUS cohorts
(Covitality, the K factor and the GFP) have been detailed in
other publications (Figueredo et al., 2004, 2007; Figueredo and
Rushton, 2009). The measures employed in the analyses involv-
ing the Swedish STAGE data were not precisely equivalent to
those employed in the MIDUS based study. As a measure of
K, the Mini K was employed (Figueredo et al., 2006). This is a
20 item short-form measure of K which exhibits adequate reli-
ability (0.73) and an excellent validity (0.91) (Figueredo et al.,
2014). A 44-item short version of the Big five Inventory (John
et al., 1991) was employed as a measure of the GFP (the BFI-
44). For Covitality, two questions tapping the domain of men-
tal health were employed, one of which measured depression
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(Magnusson Hanson et al., 2014), with the second measuring
emotional exhaustion (Magnusson Hanson et al., 2008). These
were reverse scored such that high mental health equated to low
depression and emotional exhaustion.

Missing Data Imputation
Missing data must be addressed when utilizing longitudinal data.
If large amounts of missingness are present in a dataset, this
might bias parameter estimates and p-values, increasing type 1
or type 2 error (Schlomer et al., 2010). For the analyses, missing
data were handled with multivariate imputation (Gorsuch, 1983;
Figueredo et al., 2000) and multiple imputation, using PROC
MI in SAS. Thus, data for each twin with in each category of
zygosity were imputed as a separate individual prior to disag-
gregating and then recombining them for further analysis. Twins
were then matched within twin dyads, and later randomly paired
with opposite-zygosity twin dyads for heritability analyses, as
described below. To avoid confusion, the use of the expression
“matching” within each twin dyad will be restricted to mean the
linking of each twin with each corresponding co-twin (identi-
cal sibling). Instead the expression “pairing” between these twin
dyads is used, specifically meaning the random assignment of
DZ twin dyads to MZ twin dyads not naturally associated across
zygosities.

Multivariate imputation (MVI) involved estimating unit-
weighted factor scores for the component scales and composite
lower-order factors using: (1) the means of the standardized
scores for all items that were not missing within each scale and
(2) the means obtained from the standardized scores for all
the indicator scales not missing within each factor (Figueredo
et al., 2000). Most of the scale and lower-order factor scores were
recovered this way. Unit-weighted factor scoring was applied, in
order to avoid problems associated with the sample-specificity of
factor scoring coefficients produced by standard errors of incon-
sistent magnitudes across different samples (Gorsuch, 1983).
These unit-weighted factor structures are therefore simply part-
whole correlations (here termed “unit-weighted factor loadings”
for convenience) between the latent composites and each of their
component indicator measures. Although some of the samples
were of sufficient size to reliably estimate differentially-weighted
factor scores and factor loadings, this one method was applied
throughout for consistency.

For those missing data that remained on the scale and factor
scores, the EM algorithm, as implemented by SAS PROCMI was
employed. Each of the twin datasets were assigned 30 multiple
imputations using this procedure. These were then aggregated at
the lower-order factor level across the 30 “multiple imputations”
(using SAS PROCMEANS).

Data Aggregation and Analytic Procedures
The Continuous Parameter Estimation Method (CPEM; Gor-
such, 2005) was employed. This permits the change in the covari-
ance between two variables (such as a higher-order multivariate
construct like Super-K and a constituent lower-order latent vari-
able like Covitality) to be determined throughout the full range
of another variable (such as the overall level of Super-K). For all
LH domains sampled, correlation coefficients were estimated at

the individual level by taking the cross-product of the standard-
ized (Z) scores of each individual’s performance on the relevant
subscales.

Pearson’s Product-Moment Correlation Coefficient is defined
as the mean cross-product of the standardized (“Z”) scores:

6(Zx∗Zy)/N (1)

It follows that the group mean of these individual-level
cross-products automatically becomes the correlation coeffi-
cient for each group under consideration. This is mathemati-
cally inevitable by definition. Therefore, the cross-product itself
(Zx∗Zy) can be used as the individual-level “raw score” in CPEM
to estimate the varying amount of strategic integration or differ-
entiation “effort” in each group. Thus, computing and comparing
the groupmeans of these cross-products using ANOVA automat-
ically calculates and compares group-level Pearson Correlation
Coefficients. This tests the degree to which the strength of this
relationship varies between any discreet groups.

When using more traditional methods for identifying changes
in the strength of the correlation coefficient between groups, it
is necessary to acquire samples of at least 75–100 respondents in
each group, so as to stabilize the correlation coefficients for com-
parison. As a graded method, CPEM does not require the poly-
tomization of continuous distribution, by potentially problematic
methods such as the median split (Cohen and Cohen, 1983; Mac-
Callum et al., 2002). Furthermore, CPEM permits one to regress
the individual cross-products of the z-scores on continuous as
well as categorical predictor variables, facilitating the application
of this method tomultiple regression/correlation (MRC) analyses
as well as ANOVAs.

In the present study, Continuous Parameter Estimates (CPEs)
for all individual-level parameters were obtained by means of
simple cross-multiplications of the standardized scores involved
in each model parameter. For example, SD-IE effects were
estimated by cross-multiplying the standardized unit-weighted
higher-order factor scores with the standardized unit-weighted
factor loadings on all three lower-order factors. The mean val-
ues of these individual-level CPEs automatically yield Pearson’s
Product-Moment Correlation Coefficients in the group-level
aggregate SD-IE effects.

To be able to estimate dyadic-level parameters using CPEM,
50 randomly-assigned pairings of DZ twin dyads for each of the
MZ twin dyads were performed. This procedure produced on
average 45 usable pairings (ranging from 39 to 50, due to differ-
ing numbers of MZ and DZ twins along with the vagaries of the
random assignment process) for each MZ twin dyad, which were
then then aggregated across these randomly-assigned pairings to
produce the final CPEs for each MZ twin dyad, each representing
a single genome, with which a unique heritability coefficient can
be associated. The dyadic-level parameter estimates, such as her-
itability coefficients, therefore apply to each MZ twin dyad, and
cannot be uniquely associated with any particular DZ twin dyad,
because the latter differ systematically in their genotypes within
matched dyads whereas MZ twins do not.
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As described above, first, the CPEs of SD-IE parameters for
each individual co-twin were calculated, regardless of zygos-
ity. After matching and then pairing (as per the restricted
definitions given above) twin dyads, heritability coefficients
for each randomly-assigned MZ-DZ dyad pairing were esti-
mated, and then aggregated across these pairings to obtain
“individual-genome-level” MZ dyadic means, for the SDIE
effects. Individual-genome level heritabilities were estimated by
CPEM by applying the Falconer Formula (Figueredo et al., 2004)
separately to each randomMZ-DZ dyad pairing:

h2 = 2(rMZ − rDZ) (2)

The mean values of these individual-genome-level CPEs of her-
itability coefficients automatically yield values approximating
the group-level aggregates obtained using conventional methods
(Figueredo et al., 2004; Figueredo and Rushton, 2009).

Although more sophisticated analytical techniques are now
available for the estimation of heritability coefficients, such as
biometric structural equations models (SEM; Rijsdijk and Sham,
2002), and while these more advanced methods are capable
of providing additional information such as decomposing the
shared genetic variance into additive and non additive compo-
nents, the simpler but older Falconer Formula is more effective
when using CPEM. As there is no obvious method of obtain-
ing the needed parameter estimates from SEM, the whole point
of the present analytical strategy is to develop a method to gen-
erate individual-genome-level heritability coefficients, which are
here termed individual transmissibilities on the basis that they
capture the degree to which a given trait is reliably transmitted
across generations (as reflected in the degree of twin-genomic
similarity). Furthermore, this procedure entailed 50–100 random
pairings of DZ twin dyads with MZ dyads, for a combined cross-
cultural sample of over 1000 MZ dyads. The estimation of these
model parameters by SEM would have required 5,000–10,000
such models to be estimated and then meta-analytically aggre-
gated. Such an approach would have been unwieldy, and difficult
to interpret, as well as too computationally intensive for currently
available equipment. Finally, the aggregate-level heritabilities of
the higher- and lower-order factors in the MIDUS data have
already been analyzed by means of both the Falconer Formula
(Figueredo et al., 2004) and a biometric Common PathwayModel
SEM (Figueredo and Rushton, 2009), yielding nearly identical
results for broad-sense heritabilities. Of course, the latter method
was able to decompose the heritability coefficients into additive
and non additive components, which, as acknowledged above is
its major theoretical advantage, in addition to yielding narrow-
sense heritability coefficients that were (as expected) lower than
the broad-sense heritability coefficients, which were the ones nec-
essarily obtained by the old Falconer method. This was the basic
reason why the MIDUS data were reanalyzed with a Common
Pathway Model SEM (Figueredo and Rushton, 2009), as the goal
of that study was to estimate the non additive genetic variance
in supporting the evolutionary-genetic hypothesis of recent and
directional selection for these traits in human populations.

In double checking these relatively novel CPEM procedures,
the group-level aggregations in an alternative sequence were per-
formed in order to demonstrate that approximately the same
SD-IE effect parameter estimates were recoverable within an
acceptable margin of rounding error. These alternative SD-IE
estimates were obtained by means of bivariate regressions, speci-
fied as follows: (1) using the standardized higher-order common
factor scores as the single predictor variable; and (2) using the
standardized factor loadings of the higher-order common factor
on each of the lower-order factors as the criterion variables. This
is how SD-IE effects have been estimated previously (Figueredo
et al., 2013b). It is necessary to make sure that these new CPEM
procedures produced the same results as the old one. To examine
the robustness of the novel procedure as compared with the con-
ventional one, these bivariate regressions were performed sep-
arately on each of the randomized MZ-DZ dyad pairings and
then aggregated across them as literal replications, simulating
what would have been obtained when meta-analyzing the regres-
sion results of 50 independent samples of the same population to
obtain a single, synthetic population-level regression coefficient.
The results of this alternative sequence of data aggregation and
analysis produced almost identical parameter estimates regard-
less of which method was used. These complementary results can
be made available upon request.

After these basic CPEM parameters were estimated, the two
samples (Sweden and USA) were compared by simple one-way
analyses of variance and tests for equality of means and vari-
ances were conducted. This was done first for the following: (1)
the heritabilities of the higher-order and lower-order life his-
tory factors, (2) the heritabilities of the factor loadings of the
lower-order life history factors, (3) and the heritabilities of the
SD-IE effects of the higher-order factor upon the factor loadings
of the lower-order life history factors. Secondly, this same test
was repeated for the following derived parameter estimates: (4)
the correlations among the Super-K factor and the heritabilities
of the higher-order and lower-order life history factors, (5) the
correlations among the Super-K factor and the heritabilities of
the factor loadings of the lower-order life history factors, and (6)
the correlations among the Super-K factor and the heritabilities
of the SD-IE effects of the higher-order factor upon the factor
loadings of the lower-order life history factors.

Finally, variable skewness has been consistently demonstrated
in previous SD-IE tests that used CPEM to have negligible effects
on the estimates of SD-IE effect magnitudes (Fernandes and
Woodley, 2013; Figueredo et al., 2013b; Armstrong et al., 2014;
Woodley and Fernandes, 2014; Woodley et al., 2014). Therefore
this has not been controlled in the present study.

Results

Table 1 presents the results of the tests for SD-IE, that is, the effect
of the level of the Super-K upon its loadings on the lower-order
factors, among monozygotic twins. SD-IE effects were highly
comparable (not statistically different from each other at an a pri-
ori significance level of p < 0.05) between the two countries. The
SD-IE parameters of the United States sample have already been
reported in a previous paper (Figueredo et al., 2013b), but have
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not before been systematically compared to a cross-cultural com-
parison group. Levene’s Test for Equality of Variances was used
to evaluate the null hypothesis that the variances in two samples
are statistically equivalent (Levene, 1960).

Table 2 presents the results of the heritability analysis involv-
ing Super-K and its components, the factor loadings of the com-
ponents and also the value for the SD-IE effects associated with
each lower-order factor. This systematic comparison also per-
mitted determination of whether the values estimated for the
Swedish twins were higher than those of the US sample, which
would, consistent with predictions, suggest that the Swedes have
been evolving toward greater degrees of genetic stratification.
It should be noted that, although the differences in heritabil-
ity between countries were not significant, the Swedish sample
nonetheless presented a trend toward higher average heritabili-
ties for factor loadings (0.56 ± 0.22, compared to 0.37 ± 0.20 in
the American sample) and for SD-IE (0.57 ± 0.40, compared to
0.42 ± 0.26 in the American sample), while mean heritabilities
for the LH factors were quite similar (0.50 ± 0.06 in the Swedish
compared to 0.51± 0.11 in the American sample).

Table 3 presents the correlations between the level of each
variable and the individual-level heritability estimates, or indi-
vidual transmissibilities, associated with each variable. Negative
correlations indicate that as the indicator-level increases, the level
of heritability decreases. Correlations were comparable between
the two samples for all traits.

Discussion

This study expands on previous examinations of the heritability
of the higher-order Super-K factor and its lower-order factors (K-
Factor, GFP, and Covitality) in several ways. Firstly, a method for
estimating the heritability of factor loadings and the heritability
of interindividual variations in factor loadings (i.e., the heritabil-
ity of SD-IE) was proposed based on CPEM. Secondly, this repre-
sents the first attempt to estimate the heritability of some of these
higher-order factors in populations other than North-Americans
(the heritability of the Mini-K in Sweden has been established
in a previous publication, using conventional biometric SEM;
Woodley of Menie andMadison, 2015). It was demonstrated that

TABLE 1 | Correlations between Super-K and lower-order factors (SD-IE Effects) of randomly assigned monozygotic twins.

Variable American sample Swedish sample Equality of Variances P Equality of means P

F(1, 1177) F(1,1177)
r (SE) P r (SE) P

RANDOM MZ TWIN 1

K-factor −0.32 (0.14) <0.001 −0.33 (0.09) <0.001 0.02 0.88 0.02 0.88

GFP −0.22 (0.14) <0.001 −0.33 (0.09) <0.001 0.11 0.74 0.35 0.55

Covitality −0.40 (0.16) <0.001 −0.41 (0.09) <0.001 0.00 0.99 0.01 0.93

RANDOM MZ TWIN 2

K-factor −0.37 (0.13) <0.001 −0.32 (0.09) <0.001 0.01 0.93 0.08 0.78

GFP −0.31 (0.14) <0.001 −0.31 (0.09) <0.001 0.09 0.77 <0.01 0.99

Covitality −0.42 (0.14) <0.001 −0.45 (0.10) <0.001 0.02 0.88 0.04 0.84

TABLE 2 | Heritabilities of higher-order and lower-order life history factors, higher-order factor loadings on lower-order life history factors, and SD-IE

effects on lower-order life history factors.

Variable h2 (SE) Equality of variance P Equality of means P

F(1, 1177) F(1,1177)
American sample (N = 316) P Swedish Sample (N = 863) P

FACTORS

Super-K 0.58 (0.14) <0.001 0.57 (0.09) <0.001 0.31 0.58 <0.01 0.97

K-Factor 0.53 (0.12) <0.001 0.37 (0.08) <0.001 0.64 0.42 1.13 0.29

GFP 0.52 (0.12) <0.001 0.67 (0.08) <0.001 0.46 0.50 0.98 0.32

Covitality 0.48 (0.19) <0.001 0.47 (0.10) <0.001 0.55 0.46 <0.01 0.99

FACTOR LOADINGS

K-factor 0.40 (0.18) <0.001 0.62 (0.23) <0.001 0.53 0.47 0.32 0.57

GFP 0.14 (0.13) <0.001 0.62 (0.21) <0.001 1.27 0.26 1.88 0.17

Covitality 0.57 (0.37) <0.001 0.41 (0.27) <0.001 0.18 0.67 0.08 0.78

SD-IE

K-factor 0.30 (0.22) <0.001 0.55 (0.43) <0.001 1.25 0.26 0.14 0.71

GFP 0.30 (0.15) <0.001 0.61 (0.40) <0.001 2.05 0.15 0.24 0.63

Covitality 0.64 (0.44) <0.001 0.49 (0.41) <0.001 0.02 0.88 0.03 0.87
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TABLE 3 | Correlations between the higher-order life history factor and the heritabilities of the Super-K Factor, the heritabilities of the higher-order factor

loadings on lower-order life history factors, and the heritabilities of the SD-IE effects on lower-order life history factors.

Variable Pearson’s r (SE) Equality of variances F(1, 1177) P Equality of means F(1, 1177) P

American sample P Swedish sample P

H2 OF FACTORS

Super-K −0.31 (0.12) <0.001 −0.29 (0.09) <0.001 0.03 0.85 0.02 0.90

K-factor −0.17 (0.09) 0.002 −0.23 (0.07) <0.001 0.03 0.86 0.26 0.61

GFP −0.17 (0.07) 0.002 −0.15 (0.07) <0.001 0.11 0.75 0.02 0.89

Covitality −0.34 (0.14) <0.001 −0.25 (0.08) <0.001 0.47 0.49 0.33 0.57

H2 OF FACTOR LOADINGS

K-factor −0.23 (0.15) <0.001 −0.27 (0.13) <0.001 0.53 0.76 0.02 0.89

GFP −0.20 (0.14) <0.001 −0.24 (0.13) <0.001 0.05 0.82 0.04 0.85

Covitality −0.31 (0.16) <0.001 −0.26 (0.12) <0.001 0.17 0.68 0.05 0.82

H2 OF SD-IE

K-factor −0.21 (0.17) <0.001 −0.21 (0.14) <0.001 0.06 0.81 <0.01 0.99

GFP −0.18 (0.17) 0.001 −0.20 (0.14) <0.001 0.02 0.89 0.01 0.93

Covitality −0.26 (0.17) <0.001 −0.23 (0.14) <0.001 0.05 0.82 0.02 0.90

the heritability coefficients of LH factors, of their factor load-
ings, and of their SD-IE effects are statistically equivalent in Swe-
den and in the United States. Finally, this method enabled the
testing of four specific predictions set out in the introduction:
(1) that individual-level factor loadings of the higher-order life
history factor on its lower-order factors will be partially herita-
ble, evidencing some degree of genetic preparedness; (2) that the
individual-level SD-IE effects themselves (the effects of the level
of the higher-order life history factor upon its loadings on the
lower-order factors) will be heritable, evidencing genetic influ-
ences upon individual differences in flexibility vs. plasticity; (3)
that the higher-order life history factor (Super-K), as well as its
lower-order factors, will be less heritable at its higher levels than
at its lower-levels; (4) that the Swedish sample will exhibit higher
levels of heritability across traits relative to the American sample,
evidencing a transition toward greater preparedness and lower
plasticity in the evolution of social polyethism.

Prediction 1 was validated in the current study, with the factor
loadings in both the US and Swedish samples indicating modest
to high levels of heritability (the lowest was in the case of the GFP
from the US sample, h2 = 0.14, all other estimates were >0.40).
Consistent with prediction 2, the SD-IE effects were also heri-
table in both samples (with h2 ranging from 0.30 to 0.64). This
indicates that the degree to which individuals are predisposed
toward the canalization of a particular phenotype by virtue of the
strength of their individual factor loadings is partly under genetic
control. Furthermore, the degree to which individuals are capa-
ble of specialization once a particular developmental trajectory
has been assumed is also partly under genetic control.

Prediction 3 was validated, as in both the Swedish and US
samples the heritability of Super-K was observed to significantly
decrease as a function of increasing levels of the latent variable.
This is consistent with the observation that across scales, the SD-
IE effect is concentrated on the strongest measures of K, thus the
decline in heritability likely results from the fact that the K-factor

itself weakens at high levels. The systematic comparisons revealed
no significant differences between the samples in terms of the
magnitudes of these effects across the two populations.

Concerning Prediction 4, the average heritability of the
measured traits was not significantly higher in the Swedish sam-
ple than in the United States sample. Prediction 4 was there-
fore not supported, although the pattern of results suggested
that the Swedish mean heritabilities might have been somewhat
higher given sufficient statistical power or lower inter-individual
variance in heritability coefficients. This fails to support the
notion that the Swedish population is relatively more genet-
ically differentiated in life history allocations than the North
American one.

It must be noted that in Sweden the K factor was assessed with
the Mini-K, therefore its heritability was expected to be lower
than that of the American K factor (which was measured with
the full ALHB) due to the fact that weaker measure reliabilities
tend to attenuate correlations (Hunter and Schmidt, 2004). This
proved to be the case, although the difference was non significant.

Although the ability to estimate individual-genome transmis-
sibilities might seem like a purely academic point of statistical
legerdemain, it opens up wide-ranging possibilities for future
re studies. In this study, it was found that the mean levels of
the higher-order “Super-K” life history factor for each MZ Twin
Dyad predicted a variety of SD-IE effects, as well as the trans-
missibilities of their higher-order and the lower order factor
scores, the factor loadings of the lower-order indicators, and the
genomic transmissibilities of all of these parameters. Consider-
ing these analyses a “proof of concept” as well as an interesting
finding in their own right, this same logic can be extended to
model the covariation of transmissibility coefficients with any
other set of predictor or criterion variables. For example, other
causal influences, whether genetic or environmental in origin,
could be used to investigate potential moderation effects on these
transmissibilities.
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Thus, the ability to estimate individual-genome transmissibil-
ities opens up wide-ranging possibilities for future studies. For
example gene-gene and regulatory gene interactions with other
adaptive traits might be involved in the development of: (1) pre-
paredness or plasticity in behavior, at the developmental level;
and (2) the extrinsic variability that might be present in the
external environment, may provide the selective pressures over
evolutionary time for these conditional adaptations. Molecular
biomarkers could in principle be linked to individual transmissi-
bilities, therefore the epigenetic biochemical mechanisms of pre-
paredness and plasticity could be elucidated at the proximate
level of causation.

These exciting possibilities were opened up primarily by
the application of the Continuous Parameter Estimation Model
(CPEM) to heritability analysis, which has never been attempted
hitherto. Furthermore, one of the advantages of CPEM is that the

CPEs for these individual transmissibilities can be subjected to
subsequent analyses by a wide array of other parametric statistical
methods. These include analysis of variance and multiple regres-
sion (as illustrated in the present paper), butmay also be extended
to path analysis, factor analysis, hierarchical linear models, gen-
eralizability theory analyses, etc. This is not an entirely different
method for constructing biometric models, merely an addition to
the armamentarium of complementary analytical tactics that may
be applied.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2015.00422/abstract
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