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Physical health has been linked consistently with both income and sense of control, and the authors
previously demonstrated that genetic variation in physical health measures decreased with increasing
income (see W. Johnson & R. F. Krueger, 2004). Using a nationwide sample of 719 twin pairs from the
MacArthur Foundation National Survey of Midlife Development in the United States, in this study the
authors show that genetic variation in physical health measures (number of chronic illnesses and body
mass index) also decreases with increasing sense of control. The authors integrate findings for income
and control by demonstrating an interaction between genetic influences on sense of control and income
in explaining physical health. They hypothesize that the mechanism underlying the interaction is the
known biological relationship between metabolic efficiency and adaptation to stressful environments.

Physical health has consistently been linked with income,
wealthier people being healthier. The relationship holds over time,
in a variety of geographic settings, and for almost every disease
and condition (Adler et al., 1994). The association is monotonic
across the full range of income; it is not limited to a comparison of
those with incomes below and above poverty levels. The relation-
ship cannot be explained by lack of access to medical care, and it
persists even in populations with universal health insurance (Adler
& Snibbe, 2003). These findings suggest that the mechanisms
underlying the relationship are more complex than previously
believed. Simple differences in basic living conditions are unlikely
to account for differences in health status between moderate and
high levels of income.

Recent studies of mechanisms that may account for the relation-
ship have focused on the hypothesis that income influences bio-
logical functions that in turn affect health status. The process, it is
suspected, begins with increased physical and social demands and
decreased resources for dealing with those demands associated
with lower levels of income (Adler & Snibbe, 2003). The result is
greater psychological response to the stress generated by the
mismatch between demands and resources, with subsequent phys-
iological sequelae. Over time, the accumulation of such sequelae
contributes to biological disregulation (McEwen, 1998), measured
as allostatic load, which precipitates disease states. Allostatic load
is considered to be a summary index of bodily wear and tear and
includes systolic and diastolic blood pressure, waist-to-hip ratio,
high- and low-density lipoprotein cholesterol, blood glycosylated
hemoglobin (an indicator of blood glucose levels over the past 2–3

months), and the hormones dihydroepiandrosterone, epinephrine,
and norepinephrine (indicators of malfunction of the fight-or-flight
cortisol response system). These indicators are generally acknowl-
edged to be under genetic influence (e.g., Komaroff, 1999), and
this is also true of many of the most common chronically debili-
tating physical health conditions, including heart disease, arthritis,
many cancers, and diabetes.

We recently demonstrated that genetic variance associated with
each of two measures of physical health declined significantly with
increasing income in a nationwide U.S. twin sample (Kessler,
Gilman, Thornton, & Kendler, 2004). The measures used were
number of chronic illnesses and body mass index (BMI; Johnson
& Krueger, 2004). The decline in variance with increasing income
implies the existence of a gene–environment interaction, because
the extent of genetic influence depends on individuals’ environ-
ments. The interaction effect could not be removed by correcting
income for the presence of health insurance coverage or for level
of education. This finding suggests that some aspect of the objec-
tive individual environment created by income moderates gene
expression related to physical disease conditions, and this effect is
not related in an obvious way to access to health care or general
education. We still do not know, however, how income may act to
compress the genetic variance associated with physical health
across the full range of income. That is, we do not know what it is
about income that results in changes in genetic variation associated
with physiological conditions.

Whatever it is, the effect appears to transcend specific disease
categories, hinting at a very general influence, perhaps a person-
ality variable. One personality variable likely involved is sense of
control, which has consistently been linked with physical health
(Rodin, 1986). Those who report a subjective sense that they have
greater control over life outcomes report better health, fewer and
more minor symptoms, faster recovery from illness, and reduced
mortality (Rodin, Timko, & Harris, 1985). Lachman and Weaver
(1998) reported that this association holds within income levels.
They also observed that individuals in the lowest income group
with a high sense of control showed levels of physical health
comparable with those in the higher income groups overall. In

Wendy Johnson and Robert F. Krueger, Department of Psychology,
University of Minnesota—Twin Cities.

This research was supported by the John D. and Catherine T. MacArthur
Foundation Research Network on Successful Midlife Development and by
National Institute on Aging Grant #AG20166.

Correspondence concerning this article should be addressed to Wendy
Johnson, Department of Psychology, University of Minnesota—Twin
Cities, 75 East River Road, Minneapolis, MN 55455. E-mail:
john4350@tc.umn.edu

Journal of Personality and Social Psychology Copyright 2005 by the American Psychological Association
2005, Vol. 88, No. 1, 165–173 0022-3514/05/$12.00 DOI: 10.1037/0022-3514.88.1.165

165



addition, Bailis, Segall, Mahon, Chipperfield, and Dunn (2001)
found that although perceived control was systematically related to
socioeconomic differences in self-rated health status, this was not
the direct result of greater participation in health-related behaviors
on the part of those with higher perceived control. Thus, there is
evidence that control over life may be an aspect of personality that
directly explains at least part of the income–health gradient.

One possible biological mechanism underlying the income–
health gradient is suggested by data from research on humans and
experimental animals indicating that genes for metabolic effi-
ciency enable adaptation to stressful environments and play a
primary role in affecting life span. By implication, these processes
also influence health (Parsons, 2003). In Drosophila melanogaster,
genetic variability for fitness, and especially for mortality, in-
creases in situations of high stress (Parsons, 2002). Though it is
easy to think of low income as an example of an environmental
stressor, it is also reasonable to think of low perceived control as
the perception of existing in a highly stressful environment with
which it is difficult to cope—a psychological phenomenon. The
link has been demonstrated empirically by many researchers (e.g.,
Deci & Ryan, 2002; Lazarus, 1993; Rodin & Haidt, 1999) in the
form of effects of perceptions of control and efficacy on levels of
neurotransmitters and endocrine responses. Thus, it seems likely
that a gene–environment interaction may underlie the observed
phenotypic relationship between physical health and perceived
control. Such a mechanism would complement the observed gene–
environment interaction between health and income. Therefore, we
hypothesized that the genetic variance associated with physical
health would decline with increasing levels of perceived control as
well as with increasing income. To the extent that this is true, it
reveals an important aspect of the distinction between perception
and reality. That is, it suggests that a personality variable involving
perception of reality is as powerful as the “actual reality” of
income. The purpose of this study was to test this hypothesis.

Method

Sample

We used the twin sample described in Johnson and Krueger (2004). In
brief, the sample was gathered as part of the MacArthur Foundation
National Survey of Midlife Development in the United States (MIDUS;
Kessler et al., 2004). The base sample consisted of 998 twin pairs distrib-
uted roughly according to population throughout the continental United
States and ranging in age from 25 to 74 years. For our study, we used the
719 same-sex pairs for whom we had income, chronic illness, height and
weight, control, and zygosity data, resulting in 172 monozygotic (MZ)
male pairs, 195 MZ female pairs, 138 dizygotic (DZ) male pairs, and 214
DZ female pairs. Thus, we excluded 262 opposite-sex pairs and 17 pairs
with missing or indeterminate zygosity information from the full MIDUS
twin sample of 998 pairs. Table 1 shows demographic information for the
sample we used for this study.

Measures

MIDUS participants provided survey data about annual income in sev-
eral categories, including personal and spousal earnings, Social Security
income, and other government assistance that could be used to compute
household income. The participants were slightly more wealthy than indi-
viduals in the country as a whole, but about 30% had incomes below the
national median, 14% had incomes below $20,000, and 8% had incomes

below $15,000, cutpoints chosen because they represent limited economic
means. To normalize the distribution, we log-transformed the income
variable (Cook & Weisberg, 1999).

The MIDUS surveys also included several questions about physical
health. For the present study, we used two measures: number of chronic
illnesses and BMI. Participants indicated whether they had been treated for
each of 29 chronic health problems in the past 12 months. We summed
positive responses to form a total score and log-transformed the variable to
make it more normal. The sample was relatively healthy; almost 35% of
participants did not check a single health problem. Over 28%, however,
reported treatment for 3 or more of the health problems.

Participants also indicated their current height and weight, which we
used to compute their BMIs (m2/kg). Though not necessarily an indicator
of current physical health, excessive weight is a well-known risk factor for
the development of a number of physical health problems, including
diabetes, high blood pressure, heart disease, certain kinds of cancer, and
stroke (Komaroff, 1999). Given the problem of obesity in the United States
in general and the fact that 56% of our sample could be considered
overweight using the usual criterion of BMI of at least 25, BMI seemed a
simple and relatively objective measure of overall health, even though
health risks associated with BMI levels below 25 are not generally agreed
upon.

Finally, the MIDUS questionnaire included a series of questions about
the degree to which participants perceived they had control over various
aspects of their lives, phrased as follows: “Using a 0 to 10 scale, where 0
means ‘no control at all’ and 10 means ‘very much control,’ how would
you rate the amount of control you have over your __________ these
days?” The life aspects queried were health, work situation, financial

Table 1
Sample Demographic Information

Category %

Sex
Male 43.1
Female 56.9

Race
White 81.2
Black/African American 3.7
Other 1.7
Not reported 13.5

Age (years)
25–34 23.2
35–44 28.6
45–54 26.5
55–64 13.7
65–74 7.9

Education
Under 12 years 9.8
12 years 31.2
Over 12 years 55.1
Not reported 3.8

Annual income
$0–$10,000 5.1
$10,001–$20,000 8.6
$20,001–$35,000 17.2
$35,001–$50,000 24.5
$50,001–$75,000 24.3
$75,001–$100,000 9.1
$100,000–$150,000 5.9
$150,000� 5.1

Marital status
Married 68.8
Not married 27.0
Not reported 4.2
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situation, contribution to the welfare and well-being of other people,
overall relationship with children, marriage or close relationship, sexual
aspect, and life overall. The coefficient alpha for the scale formed from the
mean response from these ratings was .73. Participants who did not have
spouses, close relationships, or children and thus did not respond to these
items received scores based on the means of the items to which they did
respond. Of note, the scale reflected control over aspects of life besides
health. Item–total correlations for the eight items ranged from .31 to .66;
the control over health item ranked fourth highest, with an item–total
correlation of .44. We also repeated the analyses described below using the
control scale with the health item omitted. Because results were effectively
identical to those based on the scale including the health item, we present
only those for the full scale.

Analytical Approach

The standard quantitative genetic model for a single variable is based on
the understanding that the observed (phenotypic) variance (Vp) in a trait is
a linear function of additive genetic (A2) variance and shared (C2) and
nonshared (E2) environmental variance. Additive genetic variance reflects
variation in genotypes transmitted from parents to offspring that causes
phenotypic variance in the trait. Shared environmental variance (e.g.,
variation in neighborhoods) reflects variation in environmental character-
istics that affects all persons within a family to the same degree and that
distinguishes among families. Nonshared environmental variance (e.g.,
differential educational or occupational experiences) reflects variation in
environments that causes individual family members to differ from each
other. Error variance is included with nonshared environmental variance
because the nonshared environmental variance terms reflect the remaining
variance after the effects of additive genetic and shared environmental
variance have been estimated. Symbolically,

Vp � A2 � C2 � E2. (1)

Under this model, each of the variance components is independent of the
others. To investigate the possibility that genetic variance associated with
physical health might decrease with increasing levels of income and/or
control, we needed a model in which the variance components themselves
vary as continuous functions of the moderators. That is, rather than mod-
eling physical health using the linear equation shown above, we used
variance component models for gene–environment interactions described
by Purcell (2002) to express the variance associated with each of the three
components as a linear interaction with the moderators. For one moderator,
this led to the following equation:

Vp � �A � �a � Moderator�2 � �C � �c � Moderator�2

� �E � �e � Moderator�2. (2)

In this equation, genetic variance A2 from Equation 1 is expressed as
(A � �a � moderator)2, C2 is expressed as (C � �c � moderator)2, and E2

is expressed as (E � �e � moderator)2. The betas are parameter estimates
that allow the variance components to differ across moderator levels. Thus,
for example, if genetic variance A2 at the mean level is .5 and �a is –.1, then
people with moderator scores that are 1 standard deviation above the mean
would have a genetic variance of .37 ���.50 � .1�2�, whereas those with
moderator scores 1 standard deviation below the mean would have a
genetic variance of .65. In addition, the expected trait level is � � �m �
moderator, in which � is the overall mean level of health and �m reflects
the main effect of the moderator on health. The model is explained in
greater detail in Purcell (2002). For the purposes of this study, we extended
this model to incorporate both income and perceived control as moderating
variables, which meant adding terms for potential interactions among the
moderators as well.

Of course, it is possible that genes are involved in the relationship
between physical health and either or both moderators through a gene–

environment correlation (the genetic control of exposure to different en-
vironments), in addition to or instead of through a gene–environment
interaction (the genetic control of sensitivity to the environment). If this is
the case, it is the result of common genetic influences on both physical
health and the environmental moderator. Genetic influences on many
variables generally considered to be environmental (including income and
control) are well known (Plomin & Bergeman, 1991). The possibility of a
gene–environment correlation can be handled in the model by expressing
the moderator means for each individual as linear functions of the overall
means, as shown above. This is a natural step, because implementation of
the variance model in Equation 2 requires modeling the means as well as
the variances. This step effectively removes from the model any genetic
effects that are shared between physical health and the environmental
moderator. When this is done, such correlated genetic effects will appear as
main effects. When both gene–environment correlation and interaction are
present, however, this approach may fail to detect gene–environment
interactions (Purcell, 2002). That is, any interaction effects detected rep-
resent lower bounds on the magnitude of the actual interaction effects in
the presence of a gene–environment correlation.

To explore the possible involvement of a gene–environment correlation
directly, we had to turn to a different model that could estimate the
gene–environment correlation itself (Purcell, 2002). We applied this mod-
ified model to estimate the gene–environment correlation between physical
health and each moderator (income and control) separately for clarity. In
this model, the moderator is used both as a dependent variable to be
modeled and as a direct influence on physical health. Thus, the main effect
in the means model is replaced with an estimate of genetic effects common
to both moderator and physical health, and estimates of genetic variance in
physical health from both common and unique sources are provided. The
gene–environment correlation thus reflects the degree to which genetic
variance is common to physical health and the moderator.

Throughout, we conducted our analyses of twin data using maximum-
likelihood estimation for raw age- and sex-corrected (McGue & Bouchard,
1984) data as operationalized in the computer program Mx (Neale, 1997).
This was important, as there were clear effects of both age and sex,
particularly in the physical health and income measures. Though the
regression process used to remove these effects resulted in standardized
data, we also applied our models to unstandardized data and obtained
highly similar results; hence, we present only the results based on stan-
dardized data. Note that income and BMI reflect real physical scales and
thus are not subject to the problems of interval imprecision generally
associated with psychological variables (McDonald, 1999). This is some-
what true of number of chronic illnesses as well. We assessed model fit
using the likelihood ratio comparison of two likelihood statistics, which is
distributed as chi-square, and the Akaike Information Criterion (AIC;
Akaike, 1983). AIC is defined as –2 � log-likelihood for the model, plus
two times the number of parameters. Models with smaller AICs are
preferred.

Genetic influences can take two basic forms that are treated somewhat
differently in quantitative genetic models. Additive genetic influences
reflect the independent influence of multiple genes, whereas in our analysis
nonadditive genetic influences reflect dominance (alleles that express
phenotypic effects even when heterozygous) and other polygenic effects
that act like dominance in the sense that they result in DZ twin correlations
that are less than half the corresponding MZ twin correlations. Quantitative
genetic models are not identified when both additive and nonadditive
genetic influences and shared and nonshared environmental influences are
modeled at once; one of the parameters must be dropped. In our previous
analysis (Johnson & Krueger, 2004), we had ascertained that number of
chronic illnesses showed no evidence of shared environmental influence
and did show evidence of nonadditive genetic influences, so we fit models
to these data that included parameters reflecting additive and nonadditive
genetic and nonshared environmental influences. Because BMI showed no
evidence of nonadditive genetic influences but did show some evidence of
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shared environmental influence, we fit models to these data that included
parameters reflecting additive genetic and shared and nonshared environ-
mental influences.

Basic correlations among the study variables and between MZ and DZ
twins are shown in Table 2. When the correlations between MZ twin pairs
are greater than those between DZ pairs, genetically influenced variance is
indicated. When the correlations between MZ pairs are less than twice the
correlations between DZ pairs, shared environmentally influenced variance
is indicated. Thus, our data suggest that at the overall population level, the
systematic variation in income and number of chronic illnesses was pri-
marily under genetic influence. Systematic variation in population-level
BMI and control appeared to result from both genetic and shared environ-
mental influences, with genetic influences predominating for BMI and
shared environmental influences predominating for control.

Results

The model-fitting statistics for the gene–environment interac-
tion models we applied are shown in Table 3. For chronic illnesses,
we began by asking how the saturated model fit. This first model
included estimates of all possible model parameters, additive and
nonadditive genetic and nonshared environmental influences and
their interactions, as well as main effects for each moderator and
their interaction on the mean. We used this model to develop the
likelihood ratio test statistics necessary to evaluate the significance
of the interaction parameters and moderation effects. We then
asked whether the moderation parameters could all be fixed to 0 to
test for the existence of any interaction effect. We found that this
was not possible without significant loss of model fit, so we went
on to estimate each combination of parameters and constraints. As
shown in Table 3, fixing the full income interaction (Income � A,
Income � C, and Income � E) to 0 resulted in increased AIC, as
did fixing the full control interaction. However, it was possible to
fix the Income � Control interaction to 0, though it was not
possible to fix either the main effect of income or the main effect
of control to 0. Models with either genetic or nonshared environ-
mental interaction terms were statistically indistinguishable. That
is, either term could be fixed to 0 without significant loss of fit,
though both could not be so constrained. We thus selected for
presentation the model with both terms free, though the resulting
AIC was slightly higher than the AIC with either term fixed. We
used the same procedure for BMI with very similar results, sub-
stituting the estimate of shared environmental influences for non-
additive genetic influence. For BMI, we selected for presentation
the model with the lowest AIC.

Table 4 shows the parameter estimates resulting from the se-
lected models, based on the results described above. The table
highlights the parameters that were important in the selected

models, and it also shows their relative magnitudes. Thus, for
chronic illnesses, the genetic variance parameter at mean levels of
both control and income was .832, and it was reduced by .177 for
each standard deviation unit by which individuals’ income ex-
ceeded the mean and reduced by .048 for each standard deviation
unit by which individuals’ levels of perceived control exceeded the
mean. This result would be squared to obtain the genetic variance
associated with a given level of income and perceived control.

There were main effects for both income and control for both
physical health measures but no main Income � Control effects,1

nor were there any genetic or environmental interactions with the
interaction between income and control. This latter finding acted to
simplify the potential model considerably. Both chronic illnesses
and BMI showed significant decreases in genetic variance with
increasing income, but all environmental influences could be con-
sidered fixed across the income dimension. For control, the situ-
ation was more complex. Both measures of physical health showed
decreasing genetic variance with increasing control, but chronic
illnesses also showed decreasing nonshared environmental vari-
ance with increasing control, whereas BMI also showed changes in
shared environmental variance across the control dimension. The
appropriate environmental variance components were modified by
the significant environmental interaction parameters in a way
directly analogous to the example for genetic variance in chronic
illnesses given above; otherwise, they were fixed.

Figures 1 and 2 present graphical descriptions of the relation-
ships implied by these parameter estimates along the dimension of
income. The interactive genetic effects of income on both mea-
sures of health can be seen clearly in the decreasing slopes of the
genetic variance lines on the graphs. The interactive genetic and
shared (for BMI) and nonshared (for chronic illnesses) effects of
control can be seen in the differences between the lines reflecting
the genetic and environmental influences among people of low and
high control (1.5 standard deviations above and below the mean).
Figures 3 and 4 present the same information along the dimension
of control. In this instance, the interactive genetic and environ-
mental effects of control on the health measures can be seen in the
decreasing slopes of the variance lines on the graphs, and the
interactive genetic effects of income can be seen in the differences
between the lines reflecting the genetic and total influences among
people of low and high income (1.5 standard deviations above and
below the mean). Control did not account for the full interactive

1 Table 3 shows that, using models that decompose variance into com-
ponents reflecting genetic and environmental influences, we did not detect
a phenotypic Income � Control interaction effect for either chronic ill-
nesses or for body mass index (BMI). This appears to contradict the results
of Lachman and Weaver (1998), at least for chronic illnesses, as they did
not consider BMI. To investigate this further, we conducted hierarchical
linear regressions of our phenotypic variables directly analogous to theirs.
For chronic illnesses, the phenotypic Income � Control interaction term
was significant at p � .001, replicating their basic results. This suggests
that the interaction observable at the phenotypic level can be interpreted
more clearly when the variance can be decomposed into its genetic and
environmental components. The phenotypic Income � Control interaction
term for BMI was not significant in our data, though those data did reveal
a gene–environment interaction process very similar to that for chronic
illnesses. We thank an anonymous reviewer for raising this question.

Table 2
Correlations Between Study Variables and Monozygotic (MZ)
and Dizygotic (DZ) Twins

Study variable 1 2 3 4 MZ DZ

1. Income — .38 .13
2. Control .10 — .33 .28
3. No. of chronic illnesses �.16 �.25 — .42 .14
4. Body mass index �.09 �.16 .20 — .74 .42

Note. All correlations were significant at p � .02.
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genetic effects of income on health, nor did income account for the
full interactive genetic effects of control on health.

The models explicitly estimating a gene–environment correla-
tion provided some evidence for it, suggesting that common genes
contribute to both physical health and to each of the moderating
variables. The estimated gene–environment correlations that re-
sulted, however, were not single point values for the relation

between each combination of variables. In the presence of inter-
actions such as those we detected for both income and control, the
extent of gene–environment correlation varies with the levels of
the two moderators because the interaction exerts its own effect on
the degree of common genetic influence. The gene–environment
correlations we calculated on the basis of our parameter estimates
for moderator levels at the mean and 1.5 standard deviations above
and below the mean are shown in Table 5. As the table shows,
overall gene–environment correlations were moderate for income
and both measures of health. Overall gene–environment correla-
tions were quite strong for control and both measures of health.
Both income and control correlations with chronic illnesses re-
mained relatively stable whether the moderators were low or high,
but the income and control correlations with BMI both increased
substantially in the presence of high control and decreased in the
presence of low control. The strength of the control correlations
suggests that the gene–environment interactions we were able to
detect involving control may be somewhat understated. Adding
complexity to the system of interrelationships among the variables,
there were also varying degrees of gene–environment correlation
between income and control. The correlation was small for income
and control at their means (.09) but very high in high-income
environments, though effectively absent in low-income environ-
ments. It was moderately negative in high-control environments
and moderately positive in low-control environments.

Discussion

The income–health gradient has long presented a tantalizing
puzzle to researchers and policymakers alike. The well-established
relationship between sense of control and physical health has
helped to explain the gradient, as have the observed phenotypic
interactions among physical health, control, and income (Bailis et

Table 3
Questions and Answers Regarding Relative Fit of Models of Variance Components of Chronic
Illnesses and Body Mass Index Moderated by Income and Control

Question Answer LRT LRT df p AIC

Number of chronic illnesses
How does the saturated model fit? 3,160.4 3,560 3,192.4
Can all the moderation effects be fixed to 0? No 49.7 12 .000 3,218.1
Can the full income interaction be fixed to 0? No 6.1 3 .107 3,192.5
Can the full control interaction be fixed to 0? No 6.1 3 .107 3,192.5
Can the Income � Control interaction be fixed to 0? Yes 2.2 4 .699 3,186.6
Can the income main effect be fixed to 0? No 7.0 1 .008 3,197.4
Can the control main effect be fixed to 0? No 44.0 1 .000 3,234.4
Selected model (see Table 4 for parameters) 2.5 7 .927 3,180.9

Body mass index
How does the saturated model fit? 2,849.9 3,514 2,881.9
Can all the moderation effects be fixed to 0? No 62.2 12 .000 2,920.1
Can the full income interaction be fixed to 0? No 22.0 3 .000 2,897.9
Can the full control interaction be fixed to 0? No 22.2 3 .000 2,898.1
Can the Income � Control interaction be fixed to 0? Yes 2.9 4 .575 2,876.8
Can the income main effect be fixed to 0? No 5.7 1 .017 2,885.6
Can the control main effect be fixed to 0? No 3.6 1 .058 2,883.5
Selected model (see Table 4 for parameters) 8.8 7 .000 2,876.7

Note. LRT 	 likelihood ratio comparison to the freely estimated (saturated) Genetic � Environmental
Interaction model; AIC 	 the Akaike Information Criterion. The first entry in the LRT and LRT df column for
each measure of physical health gives the 2 � log-likelihood and degrees of freedom for the freely estimated
(saturated) model, including all main and moderation effect parameters.

Table 4
Estimated Parameters for Selected Gene � Environment
Interaction Models for Chronic Illnesses and Body Mass Index
(BMI)

Parameter
Chronic
illnesses BMI

Genetic variance .832 .809
Shared environmental variance .000 �.178
Nonshared environmental variance .722 .446
Genetic moderation by income �.177 �.153
Shared environmental moderation by income Fixed Fixed
Nonshared environmental moderation by income Fixed Fixed
Genetic moderation by control �.048 �.125
Shared environmental moderation by control Fixed .200
Nonshared environmental moderation by control �.036 Fixed
Genetic Income � Control effect Fixed Fixed
Shared environmental Income � Control effect Fixed Fixed
Nonshared environmental Income � Control effect Fixed Fixed
Main effect of income �.110 �.074
Main effect of control �.203 �.057
Main effect of Income � Control Fixed Fixed

Note. Variance parameters are squared to estimate actual variance. For
chronic illnesses, we estimated nonadditive genetic variance and combined
it with additive genetic variance. For BMI, we estimated shared environ-
mental variance.
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al., 2001; Lachman & Weaver, 1998), yet the genetic and envi-
ronmental mechanisms by which income and control might influ-
ence physical health have remained unclear. In this study, we
supplemented evidence that a gene–environment interaction un-
derlies the income–health gradient by also investigating the extent
to which a similar gene–environment interaction underlies the
relationship between sense of control and physical health. We
found evidence for such an interaction in two measures of physical
health, numbers of chronic illnesses and BMI, in a nationwide U.S.
twin sample ranging in age from 25 to 74 years. Our results
suggest that genetic variance associated with physical health de-

creases with increasing income and also with increasing sense of
control. The current study should be replicated with larger sam-
ples, greater distributions of income and health, and alternative
(e.g., physiological) measures of health in order to increase statis-
tical power to quantify effects more precisely. Still, the results
present an intriguing picture of the complex interplay between the
genetic and environmental influences and the psychological and
physical factors involving health.

Gene–environment interaction can be thought of as genetic
control of sensitivity to different environmental conditions or,
equivalently, as environmental control of different gene effects

Figure 1. Variance in chronic illnesses as a function of income. Vg 	 genetic variance; Vn 	 nonshared
environmental variance. High and low control are 
1.5 standard deviations from the mean for control,
respectively. Shared environmental variance was 0.

Figure 2. Variance in body mass index as a function of income. Vg 	 genetic variance; Vs 	 shared
environmental variance; Vn 	 nonshared environmental variance. High and low control are 
1.5 standard
deviations from the mean for control, respectively.
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(Kendler & Eaves, 1986). It is likely that both conceptualizations
have use in thinking about the mechanisms in the differential
expression of genetic variance associated with physical health.
That is, it seems likely that low-income and/or low-control envi-
ronments act as objectively observable and/or individually per-
ceived stressors that alter physiological mechanisms such as en-
docrine responses and neurotransmitter levels, causing them to
remain in fight-or-flight mode (Adler, Epel, Castellazzo, & Icko-
vic, 2000; McEwen, 1998) and leading, over time (in a manner
analogous to the breakdown of a machine running constantly in

high gear), to the expression of genetic vulnerabilities in health.
Thus, the specific physical health problems that individuals are
more likely to encounter arise from their individual genetic heri-
tages, both behavioral and physical. These health effects are re-
duced in the absence of the stress associated with low-income
and/or low-control environments and minimized in the presence of
the opportunities associated with higher income and/or the indi-
vidual’s higher level of perceived control. The interpretation of
this interaction is complicated by the presence of a gene–
environment correlation.

Figure 3. Variance in chronic illnesses as a function of control. Vg 	 genetic variance; Vn 	 nonshared
environmental variance. High and low income are 
1.5 standard deviations from the mean for income,
respectively. Shared environmental variance was 0.

Figure 4. Variance in body mass index as a function of control. Vg 	 genetic variance; Vs 	 shared
environmental variance; Vn 	 nonshared environmental variance. High and low income are 
1.5 standard
deviations from the mean for income, respectively.
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There was evidence for a gene–environment correlation among
the variables we considered, particularly for the measures of phys-
ical health and control, and these correlations tended to be higher
in high-income, high-control environments (except for the corre-
lation between chronic illnesses and control, which was relatively
stable). These correlations would have acted to understate the
estimates of the extent of moderation of genetic influences on
physical health by the phenotypes of income and control, but they
also specify another way in which the income and control are
interrelated with physical health. For example, referring to the high
correlations between physical health and control, it would appear
that people genetically disposed to perceive that they have control
over their lives seek out situations in which they can exert such
control, and their success in doing so acts to minimize potential
deleterious genetic effects on their physical health. To a lesser but
still important extent, people who are genetically disposed to be in
a position to earn a high income also seek out such situations, and
their success in doing so has the same result. It seems likely that
the very high gene–environment correlation (.88) between income
and control in high-income environments reflects the tendency of
similar (e.g., personality and ability) traits to affect both an indi-
vidual’s perception of control and income level. At the same time,
it seems possible that an individual’s perception of control may
reflect learned experience with attempts to exert control, which
may explain the lower gene–environment correlations in low-
income and low-control environments. This potentially sheds con-
siderable light on some of the mechanisms underlying the income–
health gradient and generates possibilities for future research that
we intend to pursue. However, these are correlations, and the usual
cautions about causal relationships between correlated variables
apply. We can only speculate at present about the direction and
extent of selection involved in these associations.

The incidence and progression of adult-onset diabetes can be
used as a convenient model for thinking about the mechanisms
involved. The disease is a debilitating condition whose incidence
should be reflected in both of the measures of physical health we
used in this study. It is generally accepted that some people have
a genetic predisposition for this form of diabetes. It is also well
known that the progression of the disease can be minimized, and
development of the condition can sometimes even be prevented,

through environmental interventions such as dieting, exercising,
and monitoring blood sugar levels, all of which obviously involve
exertion of personal control. It is also likely that these personal
control activities are easier to carry out in a high-income environ-
ment, in which education levels tend to be higher, a wider variety
of appropriate foods can be made readily available, and gym fees
or sports equipment costs do not present an undue burden.

The gene–environment correlations, particularly those for con-
trol, can be thought of in similarly concrete terms. The correlations
suggest that a common set of genes contributes both to greater
physical health and to higher income and that another, possibly
different, common set of genes contributes both to greater physical
health and to greater control, and these relationships are generally
stronger in high-income environments than in low-income envi-
ronments. These relationships could result directly from the expe-
rience of greater physical health: People in good health are less
likely to miss work or school because of health problems and are
more prepared to carry out their jobs with energy and competence,
which may lead over the long run to higher income. Similarly,
people in good health tend to have the personal resources to exert
control over their lives, which may lead to positive experiences
associated with having exerted control and, therefore, to greater
perceived ability to exert control. All of this may take place more
readily in high-income environments than in low-income environ-
ments because of the greater resources and fewer constraints
associated with the high-income environment. The gene–
environment correlation for income and control suggests that a
common set of genes contributes both to higher income and higher
control among people in relatively high-income environments but
not in low-income environments.

The existence of gene–environment interactions has long been
suspected and has drawn increasing attention as a possible mech-
anism explaining phenotypic associations. Recently, for example,
Turkheimer, Haley, Waldron, D’Onofrio, and Gottesman (2003)
demonstrated that variance in IQ could be attributed primarily to
shared environmental influences in children of low socioeconomic
status. Genetic influences in these children were largely absent.
The reverse was true of children of high economic status: The
influences accounting for variance in IQ were primarily genetic in
these children. This is directly analogous to the effect we observed
on physical health, but in the opposite direction in the sense that,
for physical health, genetic variance was compressed in more
favorable environments, whereas for IQ, genetic variance was
compressed in less favorable environments. We speculate that the
direction of effect is related to the adaptiveness of the trait in
question. High IQ is an adaptive trait, and the more favorable
environment encourages its genetic expression. Genetic vulnera-
bilities to physical illness are not adaptive traits, and the more
favorable environments limit their expression.

Gene–environment interactions, whether between IQ and in-
come or health and income, suggest that the objective environment
moderates gene expression. This is an important observation and
raises interesting possibilities for public policy. But the gene–
environment interaction between health and control is potentially
of even greater significance, because control is a psychological
phenomenon. That is, the existence of the interaction between
health and control suggests that the subjective environment (one’s
perceptions of one’s circumstances) can have effects on gene
expression that are as significant as those of objective environ-

Table 5
Gene–Environment Correlations at Mean and at High and Low
Levels of Moderators

Variable M
High

moderator
Low

moderator

Chronic illnesses–income �.22 �.27 �.20
BMI–income �.31 �.57 �.14
Chronic illnesses–control �.66 �.62 �.69
BMI–control �.71 �.93 �.47
Income .09 �.30 .33
Control .09 .88 �.01

Note. High values of the moderators were defined as 1.5 standard devi-
ations above the mean, low values as 1.5 standard deviations below the
mean. For income–health correlations, the moderator is income. For
control–health correlations, the moderator is control. For the correlation
between income and control, the moderator is first control, then income.
BMI 	 body mass index.
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mental circumstances. This raises fascinating possibilities. For
example, could psychological interventions that enhance people’s
perceptions of control over their lives be as effective as public
health policies intended to moderate expression of genetic vulner-
ability to illness? Our results suggest that family members who
share low-income environments also tend to share health prob-
lems, something that has been observed in many geographic and
historical contexts. Although reduction of poverty and the life
stresses often associated with it may help to reduce those shared
health problems, it may be possible to achieve similar public health
results through policies intended to help people attain control over
their lives and manage their genetic vulnerabilities to health
problems.

Behavioral genetic studies have been criticized for producing
static heritability statistics that provide little insight about what are
clearly dynamic processes. Such criticisms have merit, but behav-
ioral genetic methodology continues to evolve. Recent advances in
methodology such as those applied in this study make clear that the
basic behavioral genetic approach can be used to capture dynamic
interplay among variables in a way that sheds light on the under-
lying processes.
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