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Abstract
In this article we attend to recent critiques of psychometric applications of life his-
tory (LH) theory to variance among humans and develop theory to advance the 
study of latent LH constructs. We then reanalyze data (n = 4,244) previously exam-
ined by Richardson et al. (Evolutionary Psychology, 15(1), 2017, https:// doi. org/ 10. 
1177/ 14747 04916 666840 to determine whether (a) previously reported evidence of 
multidimensionality is robust to the modeling approach employed and (b) the struc-
ture of LH indicators is invariant by sex. Findings provide further evidence that a 
single LH dimension is implausible and that researchers should cease interpreting 
K-factor scores as empirical proxies for LH speed. In contrast to the original study, 
we detected a small inverse correlation between mating competition and Super-K 
that is consistent with a trade-off. Tests of measurement invariance across the sexes 
revealed evidence of metric invariance (i.e., equivalence of factor loadings), consist-
ent with the theory that K is a proximate cause of its indicators; however, evidence 
of partial scalar invariance suggests use of scores likely introduces bias when the 
sexes are compared. We discuss limitations and identify approaches that researchers 
may use to further evaluate the validity of the K-factor and other applications of LH 
to human variation.
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Research on individual differences in human life history (LH) strategy has proliferated 
(for reviews, see Black et al., 2017; Ellis et al., 2009) following seminal applications of 
LH theory to human development (Belsky et al., 1991; Draper & Harpending, 1982). 
During the past couple of decades, psychometric research extended the application of  
LH theory to a broad suite of traits (Black et al., 2017; Figueredo et al., 2006). Most 
psychometric applications of LH theory have assumed that a single latent variable ade-
quately captures the covariance among an array of indicators, justifying the use of a 
single score as an empirical proxy for LH speed. Consistent with this, a second-order  
K-factor subsumed indicators including planning and control, social contact and sup-
port, attachment, religiosity, and altruism (Figueredo et al., 2004, 2005, 2007). More-
over, a third-order Super-K factor subsumed the second-order K-factor, Covitality (i.e.,  
health and mental health), and the General Factor of Personality (GFP; Figueredo et al., 
2004, 2005, 2007; Olderbak et  al., 2014). Recently, however, several theoretical and 
empirical challenges to the measurement of human LH strategy via a single score have 
emerged.

Psychometric Critiques

In the first psychometric critique to focus on second-order LH measures, Copping 
et  al. (2014) pointed out that the internal structure of the High K Strategy Scale 
had not been adequately confirmed, tested its structure using a national sample from 
England, and found that a unidimensional model fit more poorly than a model with 
four correlated first-order factors. The authors also drew attention to several issues 
in the LH literature that generalized beyond the High K Strategy Scale, including an 
over-reliance on college samples, a lack of tests for sex differences, small correla-
tions between K and mating effort, lack of validations of psychometric instruments 
against traditional LH indicators (e.g., pubertal timing or offspring number), and 
measurement of current environment instead of the early environmental conditions 
that are the focus of applications of LH theory to human development. Figueredo 
et al. (2015) responded to this critique, arguing that the psychometrics of human LH 
strategy were methodologically sound, and Copping and colleagues (2017) stood by 
their original criticisms in a rejoinder. Readers are encouraged to consult these two 
papers for more in-depth discussions of the psychometric issues and the degrees to 
which they have been previously addressed in the literature.

Second, Richardson et al. (2017b) used a bifactor model and data from a large 
national sample of respondents in the United States to test the structure of LH indi-
cators, as well as whether LH indicators or their underlying dimensions reflected 
early environmental conditions. The authors’ findings suggested that at least two 
dimensions—mating competition (subsuming, e.g., risk-taking, sensation-seeking, 
aggression, and number of sexual partners) and Super-K (subsuming, e.g., men-
tal and physical health, conscientiousness, agreeableness, positive attitudes toward 
children, and social support and pair-bonding)—subsume an array of human LH 
strategy indicators. Richardson et al. (2017a) replicated these findings in a smaller 
community sample of young adults. In these studies, childhood and young adult 
environmental harshness predicted greater mating competition and lesser Super-K 
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(i.e., a generally faster LH strategy) while early but not late unpredictability pre-
dicted lesser Super-K.

Third, Gruijters and Fleuren (2018) pointed out that LH indicators cannot sat-
isfy the assumptions of a reflective measurement model because LH theory is an 
ultimate level theory and such models assume that factors are the proximate com-
mon causes of their indicators. Theories that specify the identities of factors justify 
the statistical independence among items as well as the independence between items 
and external criteria (e.g., aspects of early environment). Because ultimate theories 
do not provide specifications about proximate causation, the authors reasoned, it was 
unclear how researchers could use LH theory to identify the K factor without con-
flating ultimate and proximate levels of explanation.

Finally, even before the debate on the psychometrics of LH measures focused 
on K factors, similar critiques had been leveled at other higher-order constructs. 
Research in personality had suggested that an overarching personality factor sub-
suming the Big Five personality dimensions (referred to as the General Factor of 
Personality, or GFP; Musek, 2007) might reflect an adaptive mechanism to facili-
tate social behavior (analogous to “g” in intelligence). The assumption is that, as 
with intelligence, it would never be disadvantageous to have too high a score, and 
that high GFP individuals would be more reproductively successful. This position, 
however, has several issues. First, there was evidence to suggest that high GFP 
is not always advantageous. For instance, those who score highly on Dark Triad 
measures are often reproductively successful, although they would likely have 
lower GFP scores (Adams et al., 2014; Carter et al., 2014). Personality traits can 
also confer differential fitness benefits depending on circumstances (Lowe et al., 
2009; Nettle, 2006), and so a linear relationship between GFP and fitness can-
not always be assumed. There have also been a number of questions regarding 
the methodological and statistical basis of GFP (Muncer, 2011) as well as con-
sideration for how such a trait could be selected for (Penke et al., 2007). In short, 
questions regarding the utility of such all-encompassing higher-order factors were 
being raised—questions that in many ways were equally applicable to monolithic 
LH measures that required similar assumptions to GFP.

Evolutionary Genetics Critique

In a more recent critique, Zietsch and Sidari (2020) highlighted several issues in 
the LH literature drawing largely upon evolutionary genetics, though they also high-
lighted the poor fit of unidimensional models as discussed above. The authors’ thesis 
was that adaptive covariation of LH indicators cannot occur except via exceptions to 
Mendel’s Law of Independent Assortment or developmental plasticity. Zietsch and 
Sidari went on to argue that none of the exceptions to Mendel’s Law seem promis-
ing as sources of adaptive covariance among human traits. Developmental plastic-
ity is also unlikely, they claimed, because studies in statistical genetics have found 
modest shared environmental effects for most complex traits, and one study did not 
detect an effect of shared environment on K (Figueredo et al., 2004).
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Although full description of, and response to, this most recent critique is outside 
the scope of the current study, we believe a brief discussion of the authors’ argu-
ments will better situate our objectives within the ongoing discussion of the merits 
of applying LH theory to between-human variance. For a more protracted response 
that addresses other aspects of Zietsch and Sidari (2020), readers may consult Del 
Giudice (2020). First, although Zietsch and Sidari identified some important gaps in 
our understanding of the sources of human LH variation and whether such variation 
is adaptive, the authors’ claims about the promise of applying LH theory to covari-
ance structures in humans appear moot to the extent that proximate causes account 
for the associations among human LH indicators. That is, past and/or current selec-
tion pressures may account for between-species and within-species (human) vari-
ance in proximate causes of trait covariance.

In the case of the K-factor, we find the above possibility plausible given that its 
indicators (e.g., agreeableness, planning and conscientiousness, social support, valu-
ing of children) can be seen as reflecting variations in the default mode network 
(DMN) that underpins social cognition, including emotion perception, empathy, 
theory of mind, and morality (Li et al., 2014), as well as remembering the past and 
thinking about the future (Andrews-Hanna, 2012). Social cognitive variation stem-
ming from the DMN likely manifests as investment in interpersonal relationships 
with intimate partners and other conspecifics, as well as the planning, empathic 
responding, moral processing, and responses to social cues required to maintain 
them. Consistent with this, social connectedness and support, planning, and pair-
bonding are among the best indicators of K (Figueredo et  al., 2006; Richardson 
et al., 2017b; Richardson & Sanning, 2017), and research at the interface of evolu-
tionary and personality science has produced evidence consistent with a key role 
of social cognition in K-factor variance (Van der Linden et al., 2015, 2017, 2018). 
Providing additional support for this theory, recent research suggests the DMN has 
undergone recent rapid expansion in humans relative to other primates (Wei et al., 
2019; Xu et al., 2019), genes expressed in this human accelerated region appear to 
differentiate humans from chimpanzees and macaques, and standing variation within 
humans in these genes is associated with differences in DMN activity, intelligence, 
mental disorders, such as schizophrenia and autism, and sociability (e.g., frequency 
of friend and family visits; Wei et al., 2019). Taken together, these findings suggest 
the DMN has undergone recent genetic change, standing variation in DMN genes 
may be under selection today, and some K-factor indicators reflect variation in DMN 
genes.

Zietsch and Sidari also concluded that there is little promise in applications 
of LH theory to plasticity in humans because “in twin studies the shared envi-
ronment has not been consistently estimated to account for a substantial propor-
tion of variation in any of the aforementioned traits” (2020:531). We find that 
the authors’ conviction is much too strong and inconsistent with recent research 
examining traits often used as LH indicators, some of which the first author con-
ducted himself. For instance, Zietsch et al. (2010) found that genetic and shared 
environmental factors explained 33% and 29%, respectively, of the variance in 
risky sexual behavior in a large sample of young adult twins. Moreover, Verweij 
et al. (2009) similarly found that shared environmental factors accounted for 33% 
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and 12% of the variance in retrospectively measured adolescent risky sexual 
behavior and misconduct, respectively. Other studies have found modest shared 
environmental effects on age at sexual debut (Bricker et al., 2006; Dunne et al., 
1997; Harden et al., 2008; Mustanski et al., 2007; Waldron et al., 2007) and fer-
tility (Kohler et  al., 1999; but see Rodgers et  al., 2001), and a definitive meta-
analysis of virtually all twin and family studies (Polderman et al., 2015) reported 
modest shared environmental effects on antisocial behavior (and see Maes et al., 
2007), education, family relationships, social relationships, and temperament and 
personality. Shared environmental effects on prosociality have also been docu-
mented, and most of the association between parental positivity and prosocial 
behavior was accounted for by shared environmental factors (Knafo & Plomin, 
2006). These studies indicate that many variations in human LH do reflect the 
environments shared by siblings, consistent with a role of early experiences in 
LH strategy development.

Notably, the authors’ skepticism of theories of LH plasticity is partly based on 
a single study that estimated the shared environmental variance in K using ACE 
modeling (Figueredo et al., 2004), a popular statistical genetic methodology for 
decomposing the phenotypic variance into additive genetic (A), shared environ-
mental (C), and nonshared environmental (E) components (see Neale & Cardon, 
2013). Thus it is worth noting that there are empirical and theoretical reasons 
for caution in interpreting ACE estimates based only on second-order K-factors. 
First, human LH appears multidimensional, and K is only one potential source of 
variance in LH indicators (as previously discussed). Second, assuming a genetic 
watershed, the factor structure of genetic influences on phenotypic indicators may 
have fewer dimensions, and the associations among them may be larger, than the 
factor structure of environmental influences. If true, this would imply that com-
mon factors (and scale scores) will have higher estimates of heritability than their 
indicators (i.e., items or subscale scores). That is, because K-factor indicators 
may share fewer genetic factors than environmental factors, and reflect them to 
a greater extent, second-order K-factors will tend to largely reflect shared genetic 
factors while environmental sources of variance will tend to be captured by the 
first-order residuals. This would mean that researchers searching for environmen-
tal influences on LH indicators should examine first-order factors or perhaps use 
bifactor models to examine first-order residuals in addition to second-order fac-
tors (see Chen et al., 2006).

Recognizing the potential importance of examining specific domains in 
addition to K, Figueredo and colleagues previously specified and tested hybrid 
models that include the K-factor as well as a developmental cascade among its 
indicators that reflected environmental influences (e.g., Garcia et  al., 2016). 
Importantly, the appropriateness of interpreting ACE estimates based on second-
order K-factors can be addressed empirically via (a) explorations of the genetic 
and environmental structure of K-factor indicators, which can allow research-
ers to determine whether genetic sources of covariance among LH indicators 
are lower-dimensional than environmental sources and have larger effects, and 
(b) comparisons of common and independent pathway ACE models, which can 
allow researchers to determine whether a K mediates genetic and environmental 
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influences on its indicators (Franić et al., 2013). If K does explain both types of 
influences on indicators, then information about environmental influences is not 
lost via a more exclusive focus on second-order K-factors.

Next Steps

As noted by Richardson et  al. (2017b), determining dimensionality and degree of 
measurement invariance are key first steps to establishing the validity of a latent 
construct. If K is indeed a proximate cause of such LH indicators as somatic, paren-
tal, and community integrative effort, as theorized above, it should impact the same 
indicators to the same extent across populations, groups, and settings. Importantly, 
Copping and Richardson (2020) recently reviewed theory and evidence (discussed 
further below) suggesting sex differences should be a primary focus in efforts to 
evaluate the validity of constructs used in psychometric applications of LH theory 
to human variability. If the structure of K-factor indicators is invariant between the 
sexes, this increases the plausibility of the proximate cause assumption about K and 
warrants more in-depth evaluation of its validity.

Sex Differences in Human LH Indicators

Copping and Richardson (2020) reviewed contemporary LH literature empirically 
examining sex differences. Sex differences are commonly studied in evolutionary 
psychology as theory recognizes the importance of mechanisms such as sexual 
(Darwin, 1871) and social (West-Eberhard, 1979) selection, which focus on adapta-
tions pertaining to mating competition and resource acquisition, respectively. Vari-
ation between the sexes is also linked to differential levels of parental investment 
in offspring that reflect costs and benefits of strategies linked to seeking/acquiring 
mates and rearing offspring (Trivers, 1972). Some scholars also suggest that sex dif-
ferences can evolve in ways that are not simply consequences of male-male com-
petition and advocate for broader definitions of sexual selection (often referred to 
as sex-dependent selection; Campbell, 2009; Carranza, 2009). Female fitness could 
be increased through selection on mechanisms that can increase female survival, 
and thus the survival of their offspring, given the substantive burden of female 
parental investment (Sear & Mace, 2008). Males may also be more variable across 
many biological and psychological traits (referred to as the Greater Male Variabil-
ity Hypothesis), potentially as a result of differential parental investment strategies 
(Hill, 2017). Putting the specifics of mechanisms aside, scholars accept that sex dif-
ferences emerge from pressures surrounding mating and survival, two key features 
that underpin most trade-offs central to LH theory (Stearns, 1992).

Given the above, sex differences can be expected to manifest in most key first-
order LH domains, such as measures of childhood attachment, cognitions, reproduc-
tive behaviors, and mating/competition related behaviors. Consequently, the same 
can be expected of second-order factors (constructs such as the K factor and GFP), 
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which subsume these lower-order domains. Although variation in first- and second-
order LH dimensions can result from varying environmental circumstances (harsh-
ness and unpredictability; Ellis et al., 2009), these are likely to impact on men and 
women simultaneously. Thus the magnitude of sex differences within LH domains 
should largely remain constant. It is beyond the scope of this paper to summarize 
the literary body substantiating these claims and interested readers should consult 
Copping and Richardson (2020) for a narrative review of the contemporary evidence 
base pertinent to them.

Despite the fact that biological sex is a key source of variation within LH-related 
constructs, there is a surprising paucity to its consideration within theoretical and 
empirical LH models (for examples of exceptions, see Del Giudice, 2009; James 
et al., 2012). Where sex is considered or discussed, it does not always manifest in 
empirical tests of theory. This therefore raises the question about how exactly sex 
should be treated in LH-informed research designs. Copping and Richardson (2020) 
made several suggestions as to how we might proceed with accounting for sex.

First, measurement invariance must be considered. It is common for researchers 
to use measures of latent constructs and assume that emerging differences between 
the sexes (or any group) in measures of central tendency must be meaningful. How-
ever, unless there is empirical evidence that the underlying factor structure, load-
ings, and item intercepts are constant across groups, we risk interpreting mean dif-
ferences that are attributable to item biases or irrelevant test-related errors (i.e., the 
differences are not actually meaningful properties of group membership; Steinmetz, 
2013). Invariance testing is an often-overlooked step in the construct validation 
process.

Although there are several levels of invariance testing, the three that are of import 
here are configural (uniformity of the construct structure), metric (uniformity of load-
ings), and scalar (uniformity of intercepts). Achievement of configural invariance is 
an absolute necessity for any meaningful comparison. Historical practice focused 
on achieving at least metric invariance (often partially) for any group comparison. 
This however may not be enough and can result in errors of prediction, particularly in 
data structures of increasing complexity (Hsiao & Lai, 2018). Indeed, lack of scalar 
invariance can also have a large impact in predictive models (Steinmetz, 2013). Con-
sequently, in LH models, there is a need for stricter analysis of invariance if we are 
to examine differences between groups seriously. Multigroup Confirmatory Factor 
Analysis (MGCFA), however, can be used effectively if there is at least partial scalar 
invariance (since mean estimates can be adjusted by allowing free variation of non-
invariant intercepts), so effective use of this methodology can be of great assistance 
to researchers (see Richardson et al., 2017b; Wang et al., 2018). Failure to establish 
invariance may lead us to erroneous conclusions where sex is concerned. In an LH 
context, it may suggest that one sex is “faster/slower” than the other even though the 
metric for each sex is not directly comparable.

An alternative solution, particularly where measurement invariance cannot be 
established, may be to treat the sexes separately for the purposes of modeling. This 
approach can be illuminating. Sex differences in means and variances don’t always 
complete the story. Often what may be missing is an analysis of underlying differ-
ences in patterns of relationships between key LH constructs. There is good reason 
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to suggest that LH strategies over the life course differ between the sexes (see James 
et  al., 2012 for an example), with outcomes often linked to different proximal or 
distal causes at varying magnitudes. These subtle, but informative, effects would 
be missed if we simply examined aggregated sample data. Such models would illu-
minate which pressures, and the outcomes they impact, are important to men and 
women, even if the means and variances within constructs used to construct the 
model are not directly comparable. Such analyses may lead us to more informative 
conclusions whose implementation could have major theoretical and practical inter-
ventionist implications.

Current Study

In this study, we reanalyze the Richardson et  al. (2017b) data using exploratory 
structural equation modeling (ESEM; Asparouhov & Muthén, 2009) to determine 
whether the structure of LH indicators is invariant by sex. ESEM is an approach 
that is useful when researchers do not wish to specify the number of factors a priori 
or assume there are no cross-loadings (i.e., unlike in confirmatory factor analysis). 
ESEM differs from traditional exploratory factor analysis (EFA) in that (a) it pro-
duces fit statistics that can be used to evaluate model correspondence to data, mean-
ing the number of factors can be determined partly on the basis of model fit; (b) 
standard errors for the rotated solution as well as residual covariances are estimable; 
and (c) parameter constraints can be imposed on the model to test for measurement 
invariance.

A challenging finding reported in Richardson, Sanning, et al. is that mating com-
petition was statistically independent of Super-K. This is not consistent with most 
applications of LH theory to humans, which predict a trade-off at the phenotypic 
level (i.e., an inverse correlation; e.g., see Kruger, 2017) between dimensions sub-
suming mating effort and somatic and parental effort. One possibility unexamined 
by the authors is that the independence between mating competition and Super-K 
was an artifact of the orthogonality constraints imposed on bifactor models (dis-
cussed further in “Methods”). ESEM is appropriate for the current study because 
in addition to allowing us to test for invariance by sex, it enables us to examine 
whether a LH indicator structure similar to that found in Richardson et al. (2017b) 
emerges in the absence of theory-driven model constraints and fits the data as well 
as the authors’ confirmatory bifactor model. In addition to providing additional 
insight into the structure of human LH indicators, the current study serves as a case 
example in the general use of ESEM as well as an exploration of the convergence 
between ESEM and bifactor model results. It may, therefore, provide some guidance 
to researchers wishing to evaluate the sensitivity of their results to constraints placed 
on confirmatory models.
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Methods

Revisiting the Bifactor Model

As described in Richardson et  al. (2017b), most factor-analytic studies of human 
LH strategy have relied on the second-order factor model (Fig. 1), which includes 
higher-order or “general” constructs (e.g., K or Super-K factors) that subsume multi-
ple first-order constructs (e.g., warmth of relationships with parents). These models 
typically specify the variances in first-order constructs unexplained by higher-order 
factors (i.e., the first-order factor residuals) as orthogonal to second-order factors 
and other first-order factors. Moreover, the first-order factor residuals are usually 
ignored (Chen et  al., 2006). But researchers are sometimes interested in general 

Bifactor Model

Second-order Model

Fig. 1  Bifactor versus second-order factor model. d = domain specific; f = first-order factor; gen general, r 
residual (Richardson et al., 2017: Fig. 1)
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factors and also factors that explain unique variance in domains over and above that 
explained by general factors. They may want to predict outcomes such as academic 
achievement with general factors (e.g., intelligence) and also unique variances in 
one or more specific domains (e.g., verbal ability). Researchers may also wish to 
estimate the effects of general as well as domain-specific factors on their items or 
determine if domain-specific variances are significant after accounting for a gen-
eral factor. As Chen et  al. (2006) noted, the absence of domain-specific variance 
in second-order models often goes unnoticed. In sum, bifactor models (see Fig. 1) 
allow for estimation of effects of general factors (e.g., Super-K) on their indicators 
and also examination of whether, and to what extent, variance in indicators that is 
not explained by general factors reflects other constructs or dimensions.

Although the pragmatic use of bifactor models for partitioning variance into 
general and specific factors (e.g., to determine if specific factors predict criteria of 
interest holding the general factor constant; Chen et al., 2006) has generated little 
controversy, greater scrutiny has been leveled at efforts to determine whether bifac-
tor or second-order models better account for the associations among items or first-
order constructs (e.g., domains of psychopathology; Bonifay et  al., 2017; Gignac 
& Kretzschmar, 2017; Mansolf & Reise, 2017; Snyder et  al., 2017). First, bifac-
tor models tend to fit better than second-order models when the true model has 
error covariances and/or cross-loadings (Mansolf & Reise, 2017). This might lead 
researchers to incorrectly select bifactor models over second-order models. Second, 
the general and specific factors in bifactor models do not always seem theoretically 
plausible—can we attribute unique identities to the specific factors?

In our view, the first issue is less likely applicable to Richardson et al. (2017b)’s 
findings because they did not compare bifactor and second-order models, but instead 
used the bifactor model to examine variance in Super-K indicators not accounted 
for by the general factor. The authors did claim that a two-dimensional structure fit 
the Super-K and mating competition data better than a single dimension. It seems 
unlikely (to us) that specifying a second-order or other model of the Super-K indica-
tors would change the association between mating competition and Super-K dramat-
ically enough to make a single dimension plausible (i.e., from consistent with the 
null to, say, r = 0.80); however, additional research is needed to determine the extent 
to which the structure reported in Richardson et al. (2017b) might be an artifact of 
the orthogonality constraints imposed on their bifactor model.

The second issue more clearly applies to Richardson et al. (2017b) because, as  
mentioned above, the authors examined the variance in Super-K indicators not 
explained by the general factor (i.e., the variance captured by the specific factors). 
As noted by Bonifay et al. (2017), specific factors may not have identities that are 
plausibly distinct from general factors. This implies that in Richardson et al. (2017b), 
the orthogonality constraints imposed between Super-K and the specific factors 
could be questionable. It is also possible that these orthogonality constraints forced 
some Super-K indicator variance, which would have been captured by the general 
factor in second-order models, into the specific factors. If this variance was shared 
with mating competition, perhaps the constraints on the bifactor model reduced the 
estimated magnitude of the covariance between mating competition and Super-K. 
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In the current study, we use ESEM because it allows us to test for invariance by sex 
while simultaneously addressing this possibility.

Data

This study reanalyzed publicly available national data from the surveys of Midlife in 
the United States (MIDUS; n = 4,244). The MIDUS surveys investigated the role of 
behavioral, psychological, and social factors in accounting for age-related variations 
in health and well-being. We used the data from 2004–2006 (Round 2) and sample 
demographics are described in Richardson et al. (2017b). For more information about 
the MIDUS samples, please visit http:// www. midus. wisc. edu/ midus1/ index. php.

Instruments

This study examined factor and index scores produced by Richardson et al. (2017b) 
using data associated with 19 Round 2 indicators1 (measured with 73 items) of  
middle adult LH strategy. A full list of the items and scale scores used is presented 
in the ESM (reproduced from Richardson et al., 2017b), along with the associated 
MIDUS labels, constructs measured, and item contents. The original report also 
contains citations to reviews of LH measures or other publications where the use 
of each indicator is substantiated. For further information about the MIDUS scales, 
including coefficient α for the MIDUS samples and references to validation studies, 
please access the MIDUS I and II scales information at http:// www. midus. wisc. edu/ 
midus1/ index. php and http:// www. midus. wisc. edu/ midus2/ proje ct1/.

Analysis

We conducted our ESEM analyses (Asparouhov & Muthén, 2009) using the MPlus 
8 software package and the robust weighted least squares (WLSMV) estimator 
because two items were ordinal (Muthén et al., 1997). We conducted all significance 
tests at the 0.005 level to protect against Type I errors (Benjamin et al., 2018) and 
used β > 0.30 as the threshold for interpreting factor loadings (Kline, 2015). We used 
the delta parameterization and oblique rotations (Geomin). We used multiple group 
ESEM for our invariance testing. For descriptions of how ESEM and multiple group 
ESEM models are parameterized, see the Mplus User Guide Version 8, examples 4.1 
and 5.27 ( http:// www. statm odel. com/ downl oad/ users guide/ Mplus UserG uideV er_8. 
pdf).

Model fit.  We used a variety of fit indices because they provide different informa-
tion about model fit. We considered the substantive meaningfulness of the model, 
nonsignificance of the χ2 likelihood ratio statistic (Bollen, 1989), Tucker–Lewis 

1 There are 21 scores total because two indicators selected in the original study are two-dimensional.
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index (TLI) and comparative fit index (CFI) greater than 0.95 (Byrne, 2001; Hu & 
Bentler, 1999), and root means square error of approximation (RMSEA) values of 
less than 0.05 (Browne & Cudeck, 1993) as evidence of acceptable fit to the data. 
In this study, we used the corrected χ2 difference test (Δχ2) and differences in CFI 
(ΔCFI) that exceeded 0.01 (Cheung & Rensvold, 2002) to evaluate whether invari-
ance held across the sexes. We used ΔCFI partly because we expected χ2 difference 
tests to be significant even in cases when differences in fit were trivial given the 
large size of our sample.

Hypothesized model.  Our modeling approach consisted of two interrelated steps. 
First, we used ESEM to test the structure of the LH indicators in the sample as a 
whole. We began by specifying a single-factor measurement model and then com-
pared it with models with increasing numbers of factors, ceasing when model fit was 
observed as excellent or solutions did not make substantive sense. This allowed us to 
examine whether a LH indicator structure similar to that found in Richardson et al. 
(2017b) emerged in the absence of theory-driven model constraints. Our approach 
was exploratory and did not specify the number of factors that would subsume our 
LH indicators. However, we did specify a substance use/abuse factor in light of past 
research that reported a unidimensional structure of substance use/abuse indicators  
(Richardson et al., 2014, 2016, 2017a, 2017b). Thus, the model included an ESEM 
LH portion as well as a confirmatory substance use/abuse portion. We did not make 
any a priori predictions about the presence or absence of cross-loadings in the 
ESEM. In our second step, we used multiple group ESEM to test for configural, 
metric, scalar invariance across the sexes. We also tested for sex differences in factor 
means and variances.

Results

ESEM

This study used ESEM to reexamine nationally representative middle adult data  
analyzed in Richardson et al. (2017b). Our objectives were to (a) use an exploratory 
approach to determine whether a structure similar to that reported in the original 
study emerged, as well as (b) test for measurement invariance by sex. Regarding (a), 

Table 1  ESEM model fit 
information

*Statistically significant at p < .005

Model χ2(df) CFI TLI RMSEA(95% CI)

2 Factors 7984.900 (187)* .747 .716 .099 (.097, .101)
3 Factors 5285.624 (171)* .834 .796 .084 (.082, .086)
4 Factors 3151.314 (156)* .903 .869 .067 (.065, .069)
5 Factors 2257.646 (142)* .931 .898 .059 (.057, .061)
4 Factors b 1455.717 (146)* .957 .939 .046 (.044, .050)
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we sought to determine whether statistical independence between mating competi-
tion and Super-K could have been an artifact of the a priori constraints imposed on 
bifactor models. To achieve our objectives, we conducted an ESEM analysis start-
ing with a single LH factor as well as the substance use/abuse factor. We tested this 
model, and it fit the data poorly (e.g., CFI = 0.747; see Table 1 for complete fit infor-
mation). We then increased the number of factors subsuming the LH indicators to 
two (three factors in total; CFI = 0.834), three (four factors in total; CFI = 0.903), 
and four (five factors in total; CFI = 0.931). The three latent LH variables in the 
four-factor model were readily interpretable as Super-K, mating competition, and 
the general factor of personality (GFP); the fourth factor was liability to substance 
use/abuse (Table 2). The same indicators loaded substantially on these factors as in 
the original study (Richardson et al., 2017b). For instance, social support, mental/
physical health, education, pair-bonding, and neuroticism loaded substantially on 
Super-K.

The five-factor model was difficult to interpret. For one of the LH factors, only 
one indicator (agreeableness) had a large loading (β = 0.67), and the next highest 

Table 2  Standardized factor 
loadings from final model (4b)

Table displays standardized loadings associated with statistically sig-
nificant unstandardized effects. Standardized effects larger than .30 
are bolded

Super-K Mating 
competi-
tion

GFP Substance 
use/abuse

Extroversion .14 .74
Openness  − .14 .95
Conscientiousness .15  − .04 .53
Agreeableness .01  − .52 .45
Neuroticism  − .49
Pair-bond .52  − .11
Positive affect .57 .12
Social support .59  − .26 .14
Education .47
Mental/physical health .80 .30  − .01
Aggression  − .34 .44
No. of Sexual partners .30 .15
Risk-taking .41 .19
Neighborhood quality .23 .44 .08
Alcohol abuse .14 .36
Alcohol use .33
Smoking .29
Illicit drug use .46
Illicit drug abuse .37
Sexuality .19 .28 .18
No. of Children .07  − .20  − .07
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loading indicator was neuroticism (β = 0.36). Given the sizes and pattern of the 
loadings, the identity of this factor was unclear (e.g., what causes higher agreeable-
ness and neuroticism?). We speculate that one possibility, given the agreeableness 
loading is nearly twice the size of the next largest loading, is that this factor is due 
to effects of a construct closely related to agreeableness on other indicators. Per-
haps the small loading of aggression (β =  − 21) on this factor is consistent with this 
interpretation. Ultimately, we lacked a clear theoretical identity for this factor and 
therefore returned to the four-factor model to observe modification indices (MIs) for 
sources of strain. We found relatively large MIs (> 100) associated with five residual 
covariances, which were specified on the basis of modification indices and substan-
tive theory in the original study (sexuality ↔ # sexual partners; sexuality ↔ pair-
bonding; neighborhood quality ↔ smoking; neighborhood quality ↔ aggression; 
agreeableness ↔ neuroticism), and added these parameters. We also identified two 
additional MIs that were relatively large (> 100) and substantively plausible (pair-
bonding ↔ # sexual partners; pair-bonding ↔ illicit drug use). We added these 
parameters to the model (4 factors b) and tested it. Fit was acceptable and very simi-
lar to that observed for the final bifactor model in the original study (ΔCFI = 0.002). 
Given that fit was adequate and no relatively large MIs remained, we accepted this 
as our final model of the associations among the LH indicators.

Next, we observed and interpreted the correlations among the factors (see 
Table 3) to determine the plausibility of a single dimension of human LH strategy, 
whether Super-K and mating competition were inversely correlated, and whether 
substance use/abuse was associated with greater mating competition and lesser 
Super-K, as in the original study. We observed a large positive correlation between 
Super-K and GFP (r = 0.57), but a single LH dimension was implausible because 
mating competition and GFP were uncorrelated and because we observed a small 
inverse association between Super-K and mating competition (r =  − 0.20). We found 
moderate positive and negative associations between liability to substance use/abuse 

Table 3  Factor intercorrelations Super-K Mating compe-
tition

GFP

Super-K 1
Mating competition  − .20 1
GFP .57 .02 ns 1
Substance Use/abuse  − .48 .36  − .05 ns

Table 4  Invariance testing model fit information

*Statistically significant at p < .005

Model χ2 (df) χ2
males χ2

females CFI TLI RMSEA (95% CI)

Scalar model 1 1886.911 (364)* 981.972 904.939 .950 .943 .044 (.042, .046)
Scalar model 2 1607.040 (351)* 858.007 749.033 .959 .951 .041 (.039, .043)
Variance model 1349.786 (358)* 716.033 633.753 .968 .962 .036 (.034, .038)
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and mating competition (r = 0.36) and Super-K (r =  − 0.48), respectively. Notably, 
alcohol abuse only reflected mating competition (β = 0.36) and neuroticism only 
reflected Super-K (not GFP; β =  − 0.49).

Measurement Invariance

Next we tested our final exploratory model (4 factors b) for measurement invari-
ance by sex. Loadings, thresholds, and intercepts/thresholds were constrained equal 
across the sexes by default. We found that this model (scalar model 1) fit the data 
marginally well (e.g., CFI = 0.950; see Table 4). Several modification indices were 
relatively large (> 30), suggesting the intercepts associated with neuroticism, covi-
tality, pair-bonding, and neighborhood quality, as well as the thresholds associated 
with number of children, were not invariant between the sexes. We freed these inter-
cepts and thresholds, tested the resulting model, and found that fit improved signifi-
cantly (Δχ2 = 293.669[13], p < 0.001; ΔCFI = 0.009).

Next, we sought to test for sex differences in the latent variable means and vari-
ances. Mean liability to substance use (p = 0.192) and Super-K (p = 0.246) did not 
significantly differ between males and females. In contrast, both mean GFP and 
mating competition were significantly lower among females (p values < 0.001). To 
test the equality of ESEM factor variances in the context of multiple groups, factor 
variances and covariances must both be constrained equal. Recall that the liability 
to substance use/abuse factor was not an ESEM factor. We were able, therefore, to 
constrain its variance equal across the sexes without modifying its covariances with 
other factors. We constrained the Super-K, GFP, and mating competition variances 
and covariances, as well as the liability to substance use variance, equal across the 
sexes (variance model). These constraints did not significantly degrade model fit 
(Δχ2 = 19.437[7], p = 0.006; ΔCFI = 0.001), suggesting that none of the factor vari-
ances significantly differed between males and females. Female means and variances 
are displayed in Table 5. Male parameters are not displayed because males served as 
the reference group in this study and their means and variances were fixed to zero and 
one, respectively, to identify the model. Females served as the non-reference groups 
and their means and variances were freely estimated. Tests of the null hypothesis that 
the female means are zero provided comparison of male and female means. As noted 
above, parameter constraints were used to compare the male and female variances.

Table 5  Female means and variances

CI Confidence interval. Female means are estimated as differences from the male means, which are fixed 
to zero to identify the model
*p < .005

Latent Variables σ
2 99.5% CI −

x 99.5% CI

Super-K 1.046* 0.913, 1.178  − 0.054  − 0.173, 0.066
GFP 1.047* 0.899, 1.195  − 0.146*  − 0.235, − 0.057
Mating Competition 0.864* 0.710, 1.018  − 1.243*  − 1.403, − 1.082
Substance use/abuse 0.017* 0.010, 0.023 0.014  − 0.014, 0.043
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Discussion

This study used an exploratory approach to reexamine nationally representative mid-
dle adult data analyzed in Richardson et al. (2017b). ESEM findings in this study 
were similar to those derived from the bifactor model in the original study. On the 
basis of model fit and substantive rationale, we accepted a four-factor solution as 
the best reproducer of the associations among the LH indicators. The ESEM fac-
tors were Super-K, mating competition, and GFP; the fourth (confirmatory) factor 
was liability to substance use/abuse. No covitality (i.e., health and mental health) 
factor emerged, but this was unsurprising given that only two indicator loadings on 
this factor (neuroticism and health/mental health) were greater than β = 0.30 in the 
original study.

We found an inverse association between mating competition and Super-K, sug-
gesting the statistical independence between these factors in the original study may 
have been an artifact of constraints on the bifactor model. This inverse association 
is also consistent with a trade-off between mating effort and somatic, parental, and 
community integrative effort. We also observed a large positive correlation between 
Super-K and GFP, consistent with earlier research specifying the latter as an indi-
cator of the former (for a review, see Figueredo et al., 2006). We again found that 
neuroticism only loaded on Super-K, suggesting the GFP may not subsume this 
construct. This result accords well with the criticisms of GFP discussed above in 
our review (e.g., Muncer, 2011). Finally, liability to substance use/abuse reflected 
greater mating competition and lesser Super-K, and this is also consistent with prior 
research (e.g., Richardson et al., 2016).

The results produced by our alternative approach suggest the finding of multi-
dimensionality in Richardson et  al. (2017b) is robust to the modeling approach  
employed—the evidence against a single dimension does not seem to be an arti-
fact of constraints on the bifactor model. In particular, here we found that GFP 
was uncorrelated with mating competition, and a small inverse correlation linked 
mating competition and Super-K. This evidence is consistent with patterns of cor-
relations observed in other studies that examined broad selections of LH indicators 
(e.g., Kogan et al., 2014; Međedović, 2018) and indicates that researchers should 
cease interpreting single scores (e.g., Mini-K and other K-factor scores) as empiri-
cal proxies for LH speed. In psychometrics, construct validity hinges on internal 
structure and the nomological net (for further discussion, see Richardson et  al., 
2017b). The first problem with interpreting K-factor scores as LH speed is that, 
although K-factor scores have been linked to other constructs in a way that is con-
sistent with LH theory as applied to humans, they do not provide sufficient infor-
mation about such LH indicators as pubertal timing, age at sexual debut, mating 
effort, risky proneness, and antisocial behavior to serve as their empirical proxy. 
Again, to be clear, K-factor scores have been linked to these variables. However, 
K-factors are not useful empirical proxies for these variables because they don’t 
satisfy the assumption of local independence to an acceptable degree. Because of 
this, K-factor scores cannot be interpreted as measuring LH speed.
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The second problem with interpreting K-factor scores as LH speed is that, as dis-
cussed previously, LH speed has never been theorized as a proximate cause of any-
thing in biology. It is a pattern of covariation among LH indicators that is explained 
at the ultimate level (see Gruijters & Fleuren, 2018). Thus, there simply aren’t ade-
quate psychometric or theoretical grounds for interpreting K-factor scores as LH 
speed. We realize the transition away from interpreting K-factor scores in this way 
may be onerous for some, particularly if they used this approach in the past. Indeed, 
a large literature has now interpreted K-factor scores in this way (see Figueredo 
et al., 2014). Given this, we caution researchers to avoid arguing from the size of 
the literature or from “previous research used this approach.” Neither of these argu-
ments is compelling because they do not remediate any of the problems identified 
above.

The current study also tested for sex differences in the structure of LH indica-
tors, and several findings are notable. First, we found that configural and metric 
invariance held for the LH dimensions. These findings suggest latent LH variables 
may have equivalent effects in each sex and are consistent with our theory that K 
is a proximate cause of LH indicator covariance that emerges from DMN varia-
tions. Second, we found that the intercepts for covitality, neuroticism, pair-bonding, 
and neighborhood quality, as well as the thresholds for number of children, var-
ied between the sexes. These findings imply that mean sex differences in these LH 
indicators could not be fully attributed to LH factors and are consistent with the 
Richardson et al. (2017c) finding that the Mini-K was partially scalar invariant by 
sex. If we had computed a sum or mean score across the Super-K indicators and 
tested for a mean sex differences, ignoring these noninvariant intercepts, this would 
have likely biased the mean difference and could have led us to incorrectly conclude 
that there were mean sex differences on Super-K. Indeed, we found no evidence of 
sex differences in the Super-K means or variances. GFP was significantly lower in 
females, but its variance did not differ significantly by sex. Mating competition was 
significantly greater on average in males relative to females, but its variance also did 
not differ significantly by sex. Taken together, these findings cohere well with our 
suggestion that measurement invariance testing is crucial in efforts to evaluate the 
validity of LH constructs, as well as in efforts to detect sex differences (Copping & 
Richardson, 2020; Wang et al., 2018).

Limitations

The limitations associated with this study mirror those in the original (Richardson 
et al., 2017b). In particular, this study is limited by the use of self-report data and 
assumed, at least in part, the validity of the many psychological constructs used as 
indicators of LH strategy. These constructs have been studied extensively with fac-
tor modeling, and the original study established the unidimensionality of each scale 
before saving factor scores. The original study also used a method (i.e., Bartlett’s) 
that produces unbiased estimates of the true factor scores (Hershberger, 2005), and 
most of our LH domains contained one or more survey-developer-created scale 
scores, which were produced using validated scales. However, the validities of some 
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constructs may deserve more scrutiny. For instance, testing all our scales for invari-
ance by sex was infeasible, and thus we could not be sure that some of scales used 
to measure LH indicators did not exhibit some degree of noninvariance by sex. This 
could have led us to detect some noninvariance that was due to measurement bias 
and not true sex differences in structure. Importantly, however, our conclusions 
regarding the latent means and variances are not imperiled by this limitation—we 
left noninvariant intercepts free to vary between the sexes, and as a consequence, 
they did not impact latent level parameters (see Wang et al., 2018).

Future Directions

Our use of ESEM demonstrates the methodological strength in additional explora-
tory work to evaluate the unidimensionality of constructs. While this study retains 
its focus on Super-K style constructs, there is no reason as to why this approach 
cannot be widely employed when assessing other latent psychological constructs 
(e.g., sociosexual orientation) relevant to evolutionary approaches to human behav-
ior. Researchers should aim to provide evidence that unidimensional solutions are 
quantifiably better than multidimensional alternatives by testing between alternative 
(but theoretically substantive) model specifications and quantifying relationships 
between relevant subordinate factors/traits. This would help establish a firm validity 
case for measurement instruments. Without such evidence, unidimensional meas-
ures should be interpreted cautiously.

As discussed above, the findings presented here suggest that K-factor scores are 
not adequate empirical proxies for LH speed. They also suggest that scores likely 
introduce bias when they are used to compare the sexes. To minimize bias, future 
research should identify indicators of latent LH variables that are most consist-
ent with theory (e.g., in the case of Super-K, these are likely indicators somatic, 
parental, and community integrative effort) and invariant across the sexes and other 
groups before scores are used. Researchers should consider specifying indicators 
with loose theoretical ties to LH factor identities and/or small or noninvariant load-
ings as correlates of LH factors rather than their indicators.

Future research may also use generalized network psychometrics (see Epskamp 
et al., 2017) to explore residual structures connecting LH indicators while simulta-
neously modeling latent LH dimensions. This approach would be consistent with the 
residual covariance detected in the current study as well as theoretical and empiri-
cal work previously carried out by Figueredo and colleagues (Garcia et al., 2016). 
Notably, an appreciable degree of invariance held for the LH dimensions, and no 
Super-K or mating competition loadings appeared to vary by sex. This evidence sug-
gests LH dimensions may have equivalent effects in each sex and is consistent with 
our theory that K may be a proximate cause of LH indicator covariance that emerges 
from DMN variations. Further efforts to test this theory are warranted.
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As discussed previously, future studies can further evaluate our proximate cause 
theory of the K-factor by testing whether genetic and environmental factors influ-
ence K-factor indicators largely through K. The logic here is the same as with mul-
tiple indicators and multiple causes (MIMIC) models (Jöreskog & Goldberger, 
1975).2 A proximate cause should mediate effects of external criterion variables 
on its indicators. Whereas the typical MIMIC model includes upstream sources of 
indicator variance that are phenotypic, in statistical genetic comparisons of common 
and independent pathways models the upstream sources of indicator variance are 
unmeasured and decomposed into the ACE components using parameter constraints 
(see Neale & Cardon, 2013). In both cases, we would expect few direct effects (i.e., 
effects unmediated by K) on K-factor indicators if K was indeed their proximate 
cause. If this is correct and the common pathways model fits as well as the inde-
pendent pathways model, the Zietch and Sidari (2020) argument that plasticity plays 
little role in individual differences in K-factor indicators might be correct given the 
lack of a shared environmental effect in Figueredo et al. (2004). If instead the inde-
pendent pathways model fits best, suggesting some effects of genetic and environ-
mental factors are not mediated by K, this would be consistent with the Garcia et al. 
(2016) model that included effects on K-factor indicators that were not accounted 
for by K. To the degree that such effects exist, K-factor scores may be less useful 
and studies of this LH dimension may need to proceed via latent variable modeling. 
Importantly, researchers can evaluate the practical significance of partial invariance 
(scalar in this case), or the degree to which ignoring noninvariance and computing 
scores introduces bias (for a tutorial and R script for doing so, see Lai et al., 2019). 
Moreover, as the number and size of direct effects (i.e., effects unmediated by K) on 
K-factor indicators increases, the realist assumption that K is their proximate cause 
becomes less tenable. Taken together, the current findings of scalar noninvariance 
suggest that researchers should select indicators that best reflect K theoretically, 
demonstrate measurement invariance across the sexes and other groups, and then 
test MIMIC models or compare common and independent pathways models.

Several other directions for future research are worth highlighting. First, many 
studies of the K-factor have been conducted using university samples and thus more 
studies of diverse samples are still needed. Second, a perhaps disproportionate num-
ber of the extant psychometric studies of human LH emerged from one lab (that of 
Figueredo and colleagues), and thus contributions from more independent groups 
would likely strengthen the literature. Third, while Figueredo and colleagues took 
pains to address some potential threats to validity (e.g., social desirability bias; 

2 Measurement invariance testing via multiple groups structural equation modeling (SEM) is closely related 
to MIMIC modeling. If strict scalar invariance by sex holds for the K-factor in the former approach (i.e., all 
loadings and intercepts invariant), then there will be no direct effects of sex on K-factor indicators in the 
latter approach, as well as no moderation of K-factor loadings by sex. In a MIMIC model containing the 
K-factor, direct effects on reflective indicators of K would represent evidence of scalar noninvariance, or that 
intercepts vary by sex. By entering a K × sex interaction term into the MIMIC model, researchers can also 
test whether sex appears to moderate effects of K on its indicators. Moderation by sex, in this case, is evi-
dence of metric noninvariance or that loadings vary between the sexes. Multiple groups SEM offers several 
advantages beyond MIMIC models, including the possibility of testing for differences in variances between 
groups and more straightforward testing for differences in loadings and covariances.
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Figueredo et  al., 2014), other sources of bias, including halo bias and common 
method bias, have not been adequately addressed. Finally, although more research 
devoted to detecting evidence consistent with trade-offs is emerging in the literature 
attendant to both psychosocial and biodemographic indicators (Beall & Schaller, 
2019; Međedović, 2019), much more of this kind of work is needed (Black et al., 
2017) and studies of the role of ecology in trade-offs would be particularly informa-
tive (e.g., see Stiver & Alonzo, 2009). We hope future research can address all these 
areas in which the human LH literature might be strengthened.

Conclusion

This study used ESEM to examine whether a LH indicator structure similar to that  
found in Richardson et al. (2017b) emerged in the absence of theory-driven model 
constraints, as well as to determine whether the structure of LH indicators was 
invariant by sex. Findings were similar to the original study in that a single LH 
speed dimension was not plausible, but they suggest that the statistical independence 
between mating competition and Super-K may have been an artifact of the orthogo-
nality constraints on the bifactor model. In the current study, a small inverse correla-
tion between these variables was detected. Measurement invariance testing revealed 
evidence of metric invariance, consistent with the theory that K is a proximate cause 
of its indicators; however, evidence of partial scalar invariance indicates that use of 
scores likely introduces bias when the sexes are compared. Taken together, findings 
suggest researchers should cease interpreting K-factor scores as empirical proxies 
for LH speed, adopt modeling approaches allowing for examination of factor struc-
tures concurrent with residual structures connecting LH indicators, and engage in 
further evaluation of the validity of K via MIMIC and behavioral genetic modeling.
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