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a b s t r a c t 

Voice prosody measures have been linked with Alzheimer’s disease (AD), but it is unclear whether they 

are associated with normal cognitive aging. We assessed relationships between voice measures and 10- 

year cognitive changes in the MIDUS national sample of middle-aged and older adults ages 42–92, with 

a mean age of 64.09 (standard deviation = 11.23) at the second wave. Seven cognitive tests were as- 

sessed in 20 03–20 04 (Wave 2) and 2013–2014 (Wave 3). Voice measures were collected at Wave 3 

(N = 2585) from audio recordings of the cognitive interviews. Analyses controlled for age, education, de- 

pressive symptoms, and health. As predicted, higher jitter was associated with greater declines in episodic 

memory, verbal fluency, and attention switching. Lower pulse was related to greater decline in episodic 

memory, and fewer voice breaks were related to greater declines in episodic memory and verbal fluency, 

although the direction of these effects was contrary to hypotheses. Findings suggest that voice biomarkers 

may offer a promising approach for early detection of risk factors for cognitive impairment or AD. 

© 2022 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Alzheimer’s disease (AD), the most common type of demen-

tia, which affects approximately one in 3 seniors (age 65 + ), is

projected to affect nearly 13 million Americans by the year 2050

( Alzheimer’s Association, 2019 ; Petersen, 2004 ). With the emer-

gence of voice biomarkers for dementia, it is of interest to ex-

plore their influences on cognitive aging before clinical impair-

ment. Although cognitive dysfunction is apparent in AD, meth-

ods are needed to identify the covert neuropathological changes

that begin years ahead of obvious clinical symptoms, which could

help provide earlier treatment and possible intervention. Pre-

clinical cognitive declines are subtle enough to be overlooked

until the emergence of more apparent symptoms several years

later, by which point there are significant cognitive impairments

in life ( Alzheimer’s Association, 2019 ; Elsey et al., 2015 ; Lopez-

de-Ipina et al., 2017 ; Mundt et al., 2005 ; Sperling et al., 2011 ;

Twamley et al., 2006 ). Moreover, recent findings on the most

promising treatments suggest that early diagnosis provides the

greatest hope for slowing progression, or ultimately reversing

symptoms ( König et al., 2015 ; Meilán et al., 2020 ). One promising
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biomarker involves voice features ( Martinez-Sanchez et al., 2012 ;

Meilán et al., 2020 , 2014 , 2012 ). 

1.1. Voice biomarkers 

Recent studies suggest that voice measures, most commonly

from the category of prosody, are associated with AD ( Konig et al.,

2019 , 2018 ; Mirheidari et al., 2019 ; Testa et al., 2001 ). Cognitive

difficulties in domains such as memory and executive function are

associated with lower prosody measures of pitch (vibration rate

of vocal folds producing higher or lower sound), pulse (burst of

air when vocal cords open/close distinguishing voice quality), the

number of voice breaks (vibration of vocal cords producing artic-

ulated sound), jitter (pitch instability), shimmer (volume instabil-

ity), and higher measures of amplitude (vocal cord vibration pro-

ducing highness or lowness of volume) ( Martinez-Sanchez et al.,

2012 ; Meilán et al., 2020 , 2014 , 2012 ). 

Voice measures are sensitive enough to acutely discriminate be-

tween participants with healthy cognition, MCI, and mild dementia

( Beltrami et al., 2018 ; Kato et al., 2018 ; Themistocleous et al., 2020 ;

Thomas et al., 2020 ; Toth et al., 2017 ; Xue and Deliyski, 2001 ). Re-

cent research has found that machine-learning classification mod-

els of temporal, spectral, and prosodic voice feature sets can dis-

tinguish between normal cognition and cognitive impairment or

Alzheimer’s disease ( Haider et al., 2020 ; Nagumo et al., 2020 ).

However, it is of interest whether individual prosody features of

https://doi.org/10.1016/j.neurobiolaging.2022.06.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
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voice can be used to identify possible early signs of risk for cog-

nitive impairment. Past work suggests that speech may be an

early predictor of cognitive decline years before AD clinical di-

agnosis ( Le et al., 2018 ; Van Velzen et al., 2014 ). Voice analysis

may be less expensive, less invasive, and more readily obtained

to monitor cognitive health compared to traditional diagnostic

data such as brain imaging, cerebrospinal fluid, blood plasma,

blood serum, urinary cortisol, and salivary cortisol ( Johnson et al.,

2012 ; Karlamangla et al., 2005 ; Lu et al., 2015 ; Österberg et al.,

2012 ; Paterson et al., 2018 ; Quadri et al., 2004 ; van Himbergen

et al., 2012 ; Wolf et al., 2002 ). Therefore, voice measures may be

promising to integrate with other biomarkers to monitor cognitive

health, potentially improving detection of presymptomatic demen-

tia biomarkers and facilitating early intervention and treatment. 

Longitudinal work at the Framingham Heart Study examin-

ing midlife and older age found that dementia risk is related to

acoustic voice features, such as higher jitter, which was associ-

ated with a greater risk of developing dementia during their 7-year

follow-up period ( Lin et al., 2020 ). However, their work mainly

looked at temporal voice features. In comparison, they did not as-

sess other acoustic features of prosody that were previously found

to be significantly related to AD (such as the prosody measures

of pitch, pulse, voice breaks, and amplitude that we included in

our current study) ( Martinez-Sanchez et al., 2012 ; Meilán et al.,

2014 ; Nasreen et al., 2021 ; Nishikawa et al., 2022 ; Testa et al.,

2001 ). These additional measures may also be promising as mark-

ers. It would be helpful to assess individual differences in cogni-

tive changes before impairment, which may identify early warning

signs for eventual cognitive impairment. 

The Framingham Heart Study significantly identified voice mea-

sures, including prosody measures of jitter and shimmer, which

identified healthy participants who were more likely to develop

dementia over 7 years ( Lin et al., 2020 ). Thus, there is evidence

that jitter and shimmer are potential biomarkers for early de-

tection of significant cognitive impairment. Overall, it seems that

voice measures, which have been linked with AD diagnosis, may

be related to individual differences in cognitive changes before im-

pairment. The current study builds on the 7-year-long analysis of

Lin et al. (2020 ) by analyzing 10-year longitudinal data based on

cognitive tests administered twice over the 10-year period with

voice prosody measures of jitter and shimmer that were ana-

lyzed from cognitive interviews. However, we added other mea-

sures of voice prosody previously linked to MCI and AD, such as

pitch, pulse, voice breaks, and amplitude ( Martinez-Sanchez et al.,

2012 ; Meilán et al., 2014 ; Nasreen et al., 2021 ; Nishikawa et al.,

2022 ; Testa et al., 2001 ). Compared to past studies, our study

also adjusted for neurological conditions, depressive symptoms,

and chronic conditions in addition to age, sex, and education

( Xue et al., 2021 ; Zhang et al., 2021 ). We looked at voice features

predicting cognitive change over 10 years, a more extended range

in timespan than the study by Lin et al. (2020 ). Our dataset also

had a lower average age (M = 54.99 ± 11) compared to Lin et al.

(2020 ) (M = 63 ± 15) and included a more extensive age range

(33–83 at occasion 1). Thus, our research focused on more voice

prosody measures in a more extensive range of cognitively healthy

adults, specifically adding participants in middle age. 

Additionally, to assess temporal voice features, Lin et al.

(2020 ) analyzed voice using OpenSMILE, a program developed for

speech-based emotion recognition ( Eyben et al., 2010 ). In con-

trast, we used Praat, a program designed for analyzing, synthe-

sizing, and manipulating speech ( Boersma and van Heuven, 2001 ),

a method frequently used to assess prosody measures ( Martínez-

Nicolás et al., 2021 ; Martínez-Sánchez et al., 2012 ; Meilán et al.,

2014 ). Past work also noted limitations in the quality of voice

recordings, which created the need for expensive and time-
consuming manual transcription ( Xue et al., 2021 ). Our measures

were from high-quality voice recordings that did not require tran-

scription. Our results suggest possibilities for developing efficient

and non-invasive methods that could be used for long-term moni-

toring throughout cognitive aging. 

Cognitive aging is accompanied by less perceivable physiolog-

ical changes caused by decline in information integration in the

memory and executive function cerebral cortex regions respon-

sible for voice production and speech syntax ( Funahashi, 2001 ;

Guenther, 2006 ; Hirano et al., 2004 ; Lieberman, 2007 ). Therefore,

changes detected in the voice tied to brain aging could help iden-

tify early signs of cognitive impairment and dementia. Further re-

search is needed to investigate whether voice prosody measures

could serve as biomarkers of individual differences in cognitive

change. This method could differentiate normal and abnormal cog-

nitive changes, which could be used to detect preclinical stages of

MCI and resulting AD ( Bondi et al., 1999 ). 

1.2. Physiological biomarkers 

Other biomarkers besides voice are related to AD, such as neu-

roinflammation, allostatic load, vascular disease, APOE4 genetic

predisposition, amyloid protein and tau (phosphorylated and to-

tal), measured by cerebrospinal fluid and blood, plasma proteins

and lipids in blood, and neurofilament light chain in blood ( Craig-

Schapiro et al., 2011 ; Fransquet and Ryan, 2019 ; Heneka et al.,

20 06 ; Heutink, 20 0 0 ; Holmes and Butchart, 2011 ; Humpel, 2011 ;

Jones et al., 2014 ; Ling et al., 2017 ; Matos and De Souza-

alarico, 2019 ; Shahim et al., 2018 ; Shoji, 2011 ; Zou et al., 2020 ).

These factors could potentially inform early interventions, which

may decrease the risk of developing AD. However, these measures

are collected through invasive methods, such as blood draws and

spinal taps, which may also be expensive and cannot necessarily

be measured repeatedly over time. In contrast, monitoring voice

features remotely and more regularly may help to detect subtle

changes that could indicate heightened risk. It is also possible that

combining voice measures with the more traditional AD biomark-

ers may provide a more comprehensive assessment of cognitive

status. 

Further, past research suggests that neuropathobiological

changes associated with AD risk, such as reduced mitochondrial

functioning, reduced signaling in the insulin/IGF pathway, and re-

duced hypothalamic regulation of stress hormones, may appear

years, even decades, before clinical manifestation of AD ( Arenaza-

Urquijo et al., 2015 ; Bishop et al., 2010 ; Blalock et al., 2004 ;

Freiherr et al., 2013 ; Haigis and Guarente, 2006 ; Honer et al.,

2012 ; Lesuis et al., 2018 ; Liang et al., 2008 ; Miller et al., 2008 ;

Stacey et al., 2017 ; Wilcox et al., 2011 ). Thus, if researchers can de-

velop a non-invasive and accessible method to identify early indi-

cators of dementia risk, early treatment may be more readily pro-

vided, ultimately delaying or possibly preventing the progression

to AD. Some of these changes include reduced mitochondrial func-

tioning, reduced signaling in the insulin/IGF pathway, and reduced

hypothalamic regulation of stress hormones ( Arenaza-Urquijo et al.,

2015 ; Bishop et al., 2010 ; Blalock et al., 2004 ; Haigis and Guar-

ente, 2006 ; Honer et al., 2012 ; Lesuis et al., 2018 ; Liang et al.,

2008 ; Miller et al., 2008 ; Stacey et al., 2017 ; Wilcox et al., 2011 ).

Age-related changes to the autonomic nervous system and coordi-

nation of extraneural tissues have also been associated with de-

clined function of the brain ( Beer et al., 2017 ; Bishop et al., 2010 ;

Goodall et al., 2018 ; McLean and Le Couteur, 2004 ; Parashar et al.,

2016 ; Pfeifer et al., 1983 ; Shimazu et al., 2005 ; Strickland et al.,

2019 ). Some of these biomarkers can predict cognitive change

over a few years, whereas others are useful in assessing risk over

decades ( Albert et al., 2011 ). 
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Neuropathological changes in the brain may begin 10 or more

years before overt clinical symptoms appear ( Green et al., 20 0 0 ;

Tuladhar et al., 2016 ). Thus, it is helpful to identify the underly-

ing mechanisms that link voice biomarkers with cognitive changes

so that a risk of AD can be identified before significant neu-

ropathology and functional impairments appear. Such risk fac-

tors, along with cognitive changes, may provide warning signs for

cognitive impairment up to 13 years before a clinical diagnosis

( Linn et al., 1995 ; Sperling et al., 2011 ; Stewart et al., 2009 ). Al-

though researchers have explored these biomarkers to improve

AD identification, there is currently no widely accepted method

to detect the preclinical stages ( Alzheimer’s Association, 2019 ,

National Academies of Sciences and Medicine, 2017 ). Providing re-

liable methods to detect early warning signs of cognitive impair-

ment is particularly important given the vast individual differ-

ences in the nature and timing of cognitive declines with aging

( Dixon and Lachman, 2019 ). For example, healthy adults with lower

baselines of cognitive functioning have a higher risk of develop-

ing neurocognitive disorders such as AD within just a few years

( Chen et al., 2001 ; Elias et al., 20 0 0 ; Fox et al., 1998 ). By identify-

ing possible risk factors of abnormal cognitive aging, early detec-

tion and intervention may be possible, leading to more effective

treatment ( National Academies of Sciences and Medicine, 2017 ). 

1.3. Cognitive aging 

The most conventional method of identifying cognitive im-

pairment and AD, neuropsychological testing, allows for improved

clinical diagnostic accuracy by assessing various cognitive factors

( Albert et al., 2011 ; Ang et al., 2019 ; Ding et al., 2020 ). Result-

ing criteria have aided in identifying those performing below nor-

mative expectations who may be at risk or already experiencing

progressive cognitive impairment. For example, participants with

mild cognitive impairment (MCI) can be identified by 1 to 1.5 stan-

dard deviations below the mean score for their age and educa-

tion on verbal recall tests ( Albert et al., 2011 ; Jak et al., 2016 ).

This result suggests that relatively low cognitive test scores could

be indicative of MCI. Further, the risk of a 10-year decline from

MCI to AD can be identified by impaired performance in mem-

ory and executive function ( Albert et al., 2011 ). Thus, identifying

those with impaired cognitive performances or decline may facili-

tate early intervention, potentially lowering their risk of conversion

to dementia. Specifically, past work suggests that the range of cog-

nitive score decline can differentiate the type of risk. For example,

mean yearly cognitive declines indicative of change to MCI have

been found for Episodic Memory measured by Word List Learning

(0.14 ± 0.44) and Executive Function measured by Category Flu-

ency (0.18 ± 0.28); and mean yearly cognitive declines indicative

of change to dementia have been found for Episodic Memory (0.25

± 0.32) and Executive Function (0.18 ± 0.28) ( Carmichael et al.,

2012 ). Therefore, examining decline in cognitive scores in previ-

ous research has provided information about cognitive impairment,

such as MCI or dementia. Examining individual differences in cog-

nitive changes in relation to voice measures among a relatively

healthy sample could identify those at risk of later-life cognitive

impairment and potential biomarkers for dementia. 

1.4. Current study 

Research investigating preclinical cognitive changes in midlife

and later life with previously identified voice biomarkers of AD

may provide insights into early indicators of dementia. We tested

the hypothesis that voice biomarkers of AD would be associated

with individual differences in cognitive changes in midlife and later

life, specifically among community-residing and well-functioning
middle-aged and older adults who are part of a long-term longitu-

dinal study. We examined voice prosody and cognitive changes in

the MIDUS national sample of middle-aged and older adults with

a wide range in educational attainment, using a battery of cog-

nitive tests at 2 time points over 10 years. The goal was to in-

vestigate whether voice prosody measures previously associated

with AD are also related to individual differences in the extent

of cognitive changes over 10 years. Based on previous findings

with voice prosody and AD, we hypothesized that higher pitch,

higher pulse, more voice breaks, higher jitter, higher shimmer,

and lower amplitude would be associated with greater decline

in cognitive tests while controlling for demographic and health

factors. 

2. Methods 

2.1. Participants 

The current study included participants from the second wave

(M2) and third wave (M3) of the Midlife in the United States

Study (MIDUS) ( Radler and Ryff, 2010 ) who completed cognitive

assessments at both time points. MIDUS is a national longitudi-

nal study that was initiated in 1995–1996 through random digit

dialing households in 48 states that had a telephone (with fur-

ther data collection approximately 9 and 19 years later) to as-

sess how social, psychological, and behavioral factors affect men-

tal and physical health in English-speaking, noninstitutionalized

adults ranging from young adult to older life ( Brim et al., 2004 ).

The original participants in M1 (N = 7100) ranged from age 24–

75 years (M = 46.40 ± 13.00), were 51.7% women, had a mean

education of 13.21 years, and had a mean self-rated health on a

5-point scale (1 = poor, 5 = excellent) of 3.53( ±1.02) ( Brim et al.,

2004 ). The second wave of data collection (M2) occurred an av-

erage of 9 years later in 2003–4. Cognitive testing was added

at the second and third waves. The third wave (M3) occurred

an average of 9.12 years later in 2013–4 (N = 3294). In prior

publications, additional information about the samples and selec-

tive attrition is available ( Hughes et al., 2018 ; Radler and Ryff,

2010 ). 

Available data for participants . Participants were included in our

analysis sample if they had demographic and cognitive assess-

ments from M2 and M3, as well as at least 2 of the 3 voice record-

ings selected from M3 cognitive interviews (N = 2585). At M3, the

participants ranged from age 42–92 years (M = 64.09, standard de-

viation = ±11.23), were 55.20% women, and had an average educa-

tion (out of 20 years) of 14.57 years (standard deviation = ±2.67).

Information is summarized in Table 1 . Additionally, 90.2% of partic-

ipants in our analysis sample were white, 3.2% African American,

0.9% Native American, 0.3% Asian, and 5.4% identified as “other.”

To investigate selective attrition, differences between the anal-

ysis sample and participants not included in analyses due to drop-

ping out from the study at Wave 3 or not having usable voice

data were assessed by independent samples t-tests. As commonly

found in longitudinal studies (including MIDUS), retention in our

analysis sample was higher among those who were white, mar-

ried, and had higher education ( Agrigoroaei and Lachman, 2011 ;

Karlamangla et al., 2014 ; Radler and Ryff, 2010 ). Additionally, re-

tained participants showed higher performance on all cognitive

tests compared to dropouts ( Hughes et al., 2018 ) (see Table 2 for

means). 

Compared to excluded participants (N = 2378), those in the

analysis sample (N = 2585) at M2 were younger, had a higher pro-

portion of women, had more years of education, had fewer neuro-

logical conditions, were less likely to have depressive symptoms,
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Table 1 

Subjects, demographics, voice variables, and cognitive variables included in our analysis sample. 

N Minimum Maximum Mean Std. deviation 

Age 2585 42.00 92.00 64.09 11.23 

Sex (55.20% women) 2585 1.00 2.00 1.55 0.50 

Education (years) 2577 6.00 20.00 14.57 2.67 

Neurological conditions 2579 0.00 3.00 0.12 0.36 

Depressive symptoms 2585 0.00 1.00 0.10 0.29 

Chronic conditions 2531 0.00 22.00 2.22 2.07 

Word List Immediate pitch 2549 12.00 609.00 167.34 42.84 

Word List Immediate pulse 2558 0.00 30735.00 739.44 804.75 

Word List Immediate voice breaks 2558 0.00 374.00 20.74 16.76 

Word List Immediate jitter 2548 0.00 20.00 1.77 0.89 

Word List Immediate shimmer 2547 2.00 38.00 11.74 2.66 

Word List Immediate amplitude 2548 0.00 1.00 0.19 0.10 

Word List Delayed pitch 2424 80.00 607.00 164.61 42.94 

Word List Delayed pulse 2440 0.00 22022.00 626.51 708.37 

Word List Delayed voice breaks 2440 0.00 536.00 17.82 18.49 

Word List Delayed jitter 2424 0.00 18.00 1.92 1.10 

Word List Delayed shimmer 2425 2.00 32.00 12.00 3.10 

Word List Delayed amplitude 2423 0.00 10.00 0.20 .22 

Category Fluency pitch 2574 0.00 610.00 159.55 40.01 

Category Fluency pulse 2578 0.00 24,495.00 1458.28 1006.60 

Category Fluency voice breaks 2578 0.00 255.00 41.91 22.25 

Category Fluency jitter 2572 0.00 12.00 1.76 0.87 

Category Fluency shimmer 2574 2.00 45.00 11.69 2.66 

Category Fluency amplitude 2573 0.00 69.00 0.21 1.35 

Pitch composite 2581 87.48 608.60 164.06 39.49 

Pulse composite 2585 3.67 25,750.67 947.84 753.97 

Voice breaks composite 2585 0.00 318.00 27.02 15.56 

Jitter composite 2580 0.60 15.27 1.82 0.84 

Shimmer composite 2580 2.44 30.55 11.81 2.53 

Amplitude composite 2580 0.05 34.43 0.21 0.68 

M2 Word List Immediate 2412 0.00 15.00 7.00 2.19 

M2 Word List Delayed 2332 0.00 14.00 4.69 2.51 

M2 Category Fluency 2416 1.00 42.00 19.70 6.00 

M2 Backward Digit Span 2415 0.00 8.00 5.10 1.45 

M2 Number Series 2414 0.00 5.00 2.51 1.51 

M2 30 Second and Counting Task 2415 -2.00 90.00 38.76 11.19 

M2 Stop and Go Switch Task 2346 -3.77 -0.61 -1.07 0.23 

M3 Word List Immediate 2582 0.00 15.00 6.70 2.38 

M3 Word List Delayed 2460 0.00 14.00 4.37 2.68 

M3 Category Fluency 2582 0.00 40.00 18.80 6.05 

M3 Backward Digit Span 2583 0.00 8.00 4.97 1.47 

M3 Number Series 2517 0.00 5.00 2.33 1.56 

M3 30 Second and Counting Task 2557 -10.00 90.00 36.40 11.50 

M3 Stop and Go Switch Task 2492 -7.67 -0.42 -1.27 0.39 

Table 2 

Demographics and cognitive variables for subjects analyzed and excluded. 

Analysis sample Excluded 

N Min Max Mean SD N Min Max Mean SD 

M2 Age a 2585 33.00 83.00 54.99 11.23 2377 28.00 84.00 55.91 13.64 

M2 Sex a 2585 (55.20% women) 2378 (51.30% women) 

M2 Education (years) a 2582 6.00 20.00 14.58 2.65 2374 6.00 20.00 13.76 2.60 

M2 Neurological conditions a 2556 0.00 3.00 0.11 0.34 2348 0.00 3.00 0.12 0.37 

M2 Depressive symptoms a 2585 (9.70% depressed) 2378 (11.40% depressed) 

M2 Chronic conditions b 2572 0.00 20.00 1.64 1.79 2373 0.00 20.00 1.64 2.07 

M2 Word List Immediate a 2412 0.00 15.00 7.00 2.19 1777 0.00 15.00 6.35 2.37 

M2 Word List Delayed a 2332 0.00 14.00 4.69 2.51 1664 0.00 14.00 4.05 2.72 

M2 Category Fluency 2416 1.00 42.00 19.70 6.00 1776 0.00 40.00 17.53 6.16 

M2 Backward Digit Span a 2415 0.00 8.00 5.10 1.45 1778 0.00 8.00 4.88 1.56 

M2 Number Series a 2414 0.00 5.00 2.51 1.51 1752 0.00 5.00 1.94 1.46 

M2 30 Second and Counting Task 2415 -2.00 90.00 38.76 11.19 1760 2.00 100.00 35.21 11.44 

M2 Stop and Go Switch Task a 2346 -3.77 -0.61 -1.07 0.23 1672 -7.36 -0.22 -1.13 0.33 

Valid N (listwise) 2235 1561 

a T-test between the 2 groups is significant at the 0.01 level (equal variance assumed). 
b T-test between the 2 groups is significant at the 0.05 level (equal variance assumed). 



26 E. Mahon and M.E. Lachman / Neurobiology of Aging 119 (2022) 22–35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

had fewer chronic conditions, and performed better on all cogni-

tive assessments at Wave 2. 

2.2. Cognitive measures 

All cognitive measures from M2 and M3 were collected with

the Brief Test of Adult Cognition by Telephone (BTACT), a reliable

and valid brief cognitive battery designed for telephone adminis-

tration that assesses key cognitive domains related to cognitive ag-

ing ( Lachman and Tun, 2008 ; Lachman et al., 2014 ; Tun and Lach-

man, 2006 ). Participants were administered the BTACT at their pre-

ferred time of day. They were instructed to be in a place without

distractions, close their eyes to help with concentration, and not

write anything during the 7 cognitive tests. 

The BTACT included measures of episodic memory (Word List

Immediate [WLI] and Delayed [WLD]; immediate and delayed free

recall of 15 words), inductive reasoning (Number Series [NS]; com-

pleting a pattern in a series of 5 numbers), category verbal flu-

ency (Category Fluency [CAT]; the number of words produced from

the category of animals in 60 seconds), working memory span

(Backward Digit Span [DS]; the highest span achieved in repeat-

ing strings of digits in reverse order), processing speed (30 Second

and Counting Task [BC]; the number of digits produced by count-

ing backward from 100 in 30 seconds), and attention switching and

inhibitory control reaction time (Stop and Go Switch Task [SGST];

( Lachman and Tun, 2008 ). For SGST, reaction times were calculated

with the mean of switch and nonswitch trials median latencies on

a task requiring alternating between the “normal” condition (i.e.,

respond “Go” to the stimulus “Green” and “Stop” to the stimulus

“Red”) and the “reverse” condition (i.e., respond “Stop” to the stim-

ulus “Green” and “Go” to the stimulus “Red”). See Hughes et al.

(2018 ) for more information about the BTACT and scoring proce-

dures. 

2.3. Voice measures 

Voice measures include the 6 prosody variables that have been

most frequently associated with dementia in prior research: pitch

was measured by the mean number of vocal cord vibrations per

second; pulse was measured by the frequency of glottal pulses of

air; number of voice breaks was measured by total time length of

breaks divided by total time length of voice; jitter was measured

by frequency instability; shimmer was measured by amplitude in-

stability; and amplitude was measured by the average noise-to-

signal ratio ( Al-Hameed et al., 2019 ; Boersma and Weeink, 2019 ;

Fraser et al., 2016 ; König et al., 2015 ; Martinez-Sanchez et al., 2012 ;

Meilán et al., 2014 ; Rusz et al., 2014 ). 

The voice data were extracted from the 3 tests from the cogni-

tive interview which had the most extended segments of uninter-

rupted participant voice (WLI, WLD, and CAT), with a total of 7763

recordings. Two research assistants (RAs) were randomly assigned

to each voice recording to identify the time frame of the partici-

pant’s voice within the recording, to analyze that time frame for

voice measures using Praat voice analysis software ( Boersma and

Weeink, 2019 ), and finally to document the voice measures in an

assigned secure excel file. Reliability between the 2 RAs was calcu-

lated across all ratings by calculating the percentage of audio files

with consistent values (97.14%). Afterward, the first author resolved

any discrepancies by reanalyzing the voice segments. Voice record-

ings determined to be of poor quality or for which participants did

not complete the cognitive measures were excluded from analyses

(n = 4.24%). For each voice measure, we computed an aggregate

composite score from the Praat values averaged across the 3 cog-

nitive tests and computed internal consistency reliability using co-

efficient alpha: pitch ( α = 0.928), pulse ( α = 0.871), voice breaks
( α = 0.732), jitter ( α = 0.852), shimmer ( α = 0.878), and ampli-

tude ( α = 0.535). 

2.4. Covariates 

Based on their significant relationships with cognitive perfor-

mance in prior literature, we included self-reported age (con-

tinuous), sex (male = 0, female = 1), education (in years) ob-

tained from a telephone interview, as well as the number of

neurological conditions, depressive symptoms, and the number of

chronic conditions obtained from a self-administered questionnaire

( Alzheimer’s Association, 2019 , Gatz et al., 2001 ; Karlamangla et al.,

2014 ; Kessler et al., 2004 ; Meilán et al., 2020 , 2014 ; Mielke, 2018 ;

National Academies of Sciences and Medicine, 2017 ; Podcasy and

Epperson, 2016 ; Tsenkova and Karlamangla, 2016 ). The number of

neurological conditions was calculated by a count of the number

of “yes” answers on self-reported neurological conditions (stroke,

serious head injury, Parkinson’s disease, or other neurological dis-

order), with a higher score indicating more neurological conditions

(M2 range: 0–3; M3 range: 0–3). 

Depressive symptoms were calculated as a binary variable

(0 = no, 1 = yes) using phone interview questions per the Di-

agnostic and Statistical Manual of Mental Disorders third edition

( American Psychiatric Association, 1987 ). The depressive symptoms

variable was coded as “yes” if, within the past 12 months, the par-

ticipant experienced 2 weeks of either depressed mood or anhe-

donia most of the day or nearly every day and also had at least 4

common depression symptoms (such as poor eating, poor sleeping,

low energy, low concentration, low feelings of self-worth, and sui-

cidal thoughts or actions) ( Kessler et al., 2004 ; Tsenkova and Kar-

lamangla, 2016 ). 

The number of chronic conditions was calculated at M3 by

a count of the number of “yes” answers on self-reported health

conditions in the last 12 months (asthma/bronchitis/emphysema,

tuberculosis, other lung problems, arthritis/rheumatism/other

bone or joint disease, thyroid disease, recurring stomach trou-

ble/indigestion/diarrhea, urinary/bladder problems, being consti-

pated all or most of the time, gall bladder trouble, AIDS/HIV

infection, Lupus/other autoimmune disorders, persistent trouble

with gums/mouth, persistent trouble with teeth, high blood pres-

sure/hypertension, alcohol/drug problems, migraine headaches,

chronic sleeping problems, diabetes/high blood sugar, ulcer, her-

nia/rupture, cancer, or heart trouble) with a higher score indicat-

ing more chronic conditions (M3 range: 0–22). Participants were

not assessed for neurocognitive disorders, although this does not

exclude the possibility of some undiagnosed cognitive impairment

or AD. 

2.5. Data analyses 

Descriptive statistics were conducted in SPSS 28.0

( IBMCorp, 2021 ). We used longitudinal multilevel modeling

(MLM) ( Bolger and Laurenceau, 2013 ) and the lme4 package

( Bates et al., 2011 ) in R ( R Core Team, 2021 ) to examine whether

voice measures of pitch, pulse, voice breaks, jitter, shimmer, and

amplitude were associated with individual differences in change

in each cognitive test over 10 years. Time was coded linearly

as 0 = M2 and 1 = M3. Age, gender, education, neurological

conditions, depressive symptoms, and chronic conditions were the

control variables. The M2 and M3 cognitive measures were stan-

dardized using means and standard deviations from M2 scores.

The SGST Latency variable was multiplied by (-1) to keep the

direction consistent with other cognitive tests (i.e., a higher score

indicates better (faster) performance). 
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The following multilevel model was tested for each of the 7

cognitive tests: 

Cognitive _ test _ scor e ti = β0 i + tim e ti pitc h li + tim e ti puls e li 
+ tim e ti voicebreak s li + tim e ti jitte r li + tim e ti shimme r li 
+ tim e ti amplitud e li + ag e li + se x li + educatio n li 

+ neurological _ condition s li + depressive _ symptom s li 
+ chronic _ condition s li + e t + e i 

Equation 1 shows the simple linear growth model with the in-

teraction effect of time, and it is based on the 2 waves of cognitive

test scores for the i-th participant: time (t) represents the 2 waves

(0 = M2 and 1 = M3). β0i is the average cognitive test score at M2

when each covariate equals zero. 

3. Results 

3.1. Covariates associated with voice measures 

The correlations of the covariates with voice variables were

consistent with prior work ( Gatz et al., 2001 ; Martinez-

Sanchez et al., 2012 ; Meilán et al., 2020 , 2014 , 2012 ; Mielke, 2018 ;

Podcasy and Epperson, 2016 ). Age was negatively correlated

with pulse and voice breaks and positively correlated with jit-

ter and shimmer. Sex was negatively correlated with jitter,

shimmer, and amplitude and positively correlated with pitch,

pulse, and voice breaks. Education was negatively correlated

with pitch and positively correlated with pulse, voice breaks,

and shimmer. Neurological conditions were negatively correlated

with pulse. Depressive symptoms were positively correlated with

pitch and negatively correlated with shimmer. Chronic conditions

were negatively correlated with jitter and positively correlated

with pulse and voice breaks. The correlations are presented in

Table 3 . 

Because voice was measured from the same time point as M3

cognitive tests, we compared results from our primary longitudi-

nal analyses with correlations between voice measures and M3

cognitive performance. All of the multilevel results were repli-

cated with the M3 correlations. However, there were some other

significant relationships in the correlations for concurrent assess-

ments of cognition and voice at M3 that did not appear in the

primary analyses of cognitive change: WLI was positively corre-

lated with pitch and negatively correlated with shimmer and am-

plitude; WLD was positively correlated with pulse and pitch, and

negatively correlated with shimmer; CAT was positively correlated

with pulse; DB was positively correlated with pulse and voice

breaks; NS was positively correlated with pulse and voice breaks,

and negatively correlated with pitch; BC was positively correlated

with pulse and voice breaks, and negatively correlated with pitch;

SGST was positively correlated with pulse and voice breaks, and

negatively correlated with pitch. All correlations are presented in

Table 3 . 

3.2. Multilevel models of voice relating to cognitive measures 

For each of the 7 cognitive tests, we applied a linear mixed-

effects multilevel model (LMER) to investigate whether voice mea-

sures were associated with change in cognitive performance over

time when controlling for the covariates. Results for cognitive tests

that were used for the voice composites (WLI, WLD, and CAT)

are shown in Tables 4 –6 , and results for the relationships be-

tween changes in cognitive tests from M2 to M3 and significant

voice composites are shown in Figs. 1 –3: as expected, higher jit-

ter was associated with greater decline in WLI ( p = 0.033), WLD

( p = 0. 010), and CAT ( p = 0. 006) (see Fig. 1 graphs showing greater

10-year declines in WLI, WLD, and CAT when M3 jitter is higher).
Contrary to hypotheses, lower pulse was associated with greater

decline in WLI ( p = 0. 038) (see Fig. 2 graphs showing greater

10-year decline in WLI when M3 pulse is higher); fewer voice

breaks were associated with greater decline in WLI ( p = 0. 005),

WLD ( p < 0.001), and CAT ( p < 0. 001) (see Fig. 3 graphs showing

greater 10-year declines in WLI, WLD, and CAT when M3 amount

of voice breaks is lower). Results for cognitive tests that were

not used for the voice composites (DB, NS, BC, and SGST) are

shown in Tables 7 –10 . Results for SGST, a cognitive test not used

in voice composite, are summarized in Table 7 ; as expected, higher

jitter was associated with greater decline in SGST reaction time

( p = 0. 001) (see Fig. 2 graphs showing greater 10-year decline in

SGST when M3 jitter is higher). 

3.3. Sensitivity analyses 

Given that voice prosody could reflect how one performs on a

given test, we conducted sensitivity analyses to explore this fur-

ther for the 3 tests used to measure voice prosody. We added

to the models the measures of total voice duration for the test

and the number of intrusions or errors made on the test. These

are indirect measures of how well the participant performed on

a test and could potentially result in more voice breaks. In other

words, those with longer voice duration presumably remember

more words. However, having more intrusions also adds to du-

ration but not to the test score. The sensitivity analysis results

were consistent with the original findings: as expected, higher jit-

ter was associated with greater decline in WLI ( p = 0. 038), WLD

( p = 0. 010), and CAT ( p = 0. 006). Also consistent with the primary

analyses, lower pulse was associated with greater decline in WLI

( p = 0. 040); and fewer voice breaks were associated with greater

decline in WLI ( p = 0. 006), WLD ( p < 0. 001), and CAT ( p = 0. 001).

As the MIDUS sample includes some siblings, we tested whether

including within-family dependence (including an additional ran-

dom effects term for family) would change the results. We con-

firmed that for this test, the estimates of the key covariates and

their significance remained the same. Thus, all reported analyses

did not include the family random effects term in the model. 

4. Discussion 

The current study is the first, to our knowledge, to examine a

selection of 6 voice prosody measures previously associated with

AD as possible indicators of risk for cognitive impairment by ex-

amining their relation to cognitive changes over 10 years in a large

community-residing national sample of midlife and older adults.

We collected voice measures from participant voice segments, a

method used in work measuring temporal and spectral voice fea-

tures to assess dementia risk in participants ( Lin et al., 2020 ;

Nasreen et al., 2021 ). Our study extended this work by assess-

ing the relationships between these voice prosody measures and

cognitive changes in a sample with a larger age range while con-

trolling for health and demographic factors. Our results replicate

prior significant findings for jitter by Lin et al. (2020 ), but not for

shimmer. One possible reason is that our model controlled for

additional covariates, including neurological conditions such as

Parkinson’s disease, which is associated with higher jitter and

shimmer ( Hertrich and Ackermann, 1995 ; Ramig et al., 1988 ). In

addition, our study suggests new relationships linking 10-year cog-

nitive changes with prosody measures of pulse and voice breaks in

middle-aged and older participants. 

Our study examined individual differences in cognitive change

over 10 years, assuming that more decline is worse than less

or no decline and that more decline is potentially associated
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Table 3 

Correlations of demographic measures and cognitive measures with voice measures. 

Pitch composite Pulse composite Voice breaks 

composite 

Jitter composite Shimmer 

composite 

Amplitude 

composite 

Age Pearson Correlation 0.012 -0.082 a -0.046 a 0.159 a 0.080 a -0.004 

Sig. (2-tailed) 0.542 < 0.001 0.020 < 0.001 < 0.001 0.836 

N 2581 2585 2585 2580 2580 2580 

Sex Pearson Correlation 0.590 0.309 a 0.099 a -0.240 a -0.496 a -0.068 a 

Sig. (2-tailed) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

N 2581 2585 2585 2580 2580 2580 

Education Pearson Correlation -0.055 a 0.053 a 0.108 a 0.026 0.062 a 0.000 

Sig. (2-tailed) 0.005 0.007 < 0.001 0.194 0.002 0.996 

N 2573 2577 2577 2572 2572 2572 

Neurological Pearson Correlation -0.011 -0.040 a -0.025 0.050 b 0.059 a -0.001 

conditions Sig. (2-tailed) 0.581 0.042 0.205 0.011 0.003 0.972 

N 2575 2579 2579 2574 2574 2574 

Depressive 

symptoms 

Pearson Correlation 0.042 b 0.036 0.007 -0.022 -0.050 b -0.011 

Sig. (2-tailed) 0.033 0.068 0.734 0.270 0.011 0.567 

N 2581 2585 2585 2580 2580 2580 

Chronic Pearson Correlation 0.086 a -0.018 -0.021 0.060 a 0.010 0.015 

conditions Sig. (2-tailed) < 0.001 0.355 0.288 0.003 0.623 0.451 

N 2528 2531 2531 2527 2527 2527 

M2 Word List 

Immediate 

Pearson Correlation 0.147 a 0.179 a 0.125 a -0.112 a -0.158 a -0.105 a 

Sig. (2-tailed) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

N 2410 2410 2410 2409 2409 2409 

M2 Word List 

Delayed 

Pearson Correlation 0.136 a 0.174 a 0.101 a -0.117 a -0.176 a -0.105 a 

Sig. (2-tailed) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

N 2330 2330 2330 2329 2329 2329 

M2 Category 

Fluency 

Pearson Correlation -0.038 0.110 a 0.170 a -0.034 0.006 -0.018 

Sig. (2-tailed) 0.062 < 0.001 < 0.001 0.099 0.780 0.366 

N 2414 2414 2414 2413 2413 2413 

M2 Backward Digit 

Span 

Pearson Correlation 0.028 0.088 a 0.081 a 0.000 0.015 -0.009 

Sig. (2-tailed) 0.163 < 0.001 < 0.001 0.990 0.469 0.665 

N 2413 2413 2413 2412 2412 2412 

M2 Number Series Pearson Correlation -0.065 a 0.051 b 0.096 a -0.011 0.032 -0.001 

Sig. (2-tailed) 0.001 0.012 < 0.001 0.590 0.113 0.959 

N 2412 2412 2412 2411 2411 2411 

M2 30 Second and 

Counting Task 

Pearson Correlation -0.071 a 0.053 a 0.089 a 0.009 0.053 a 0.006 

Sig. (2-tailed) < 0.001 0.009 < 0.001 0.644 0.009 0.759 

N 2413 2413 2413 2412 2412 2412 

M2 Stop and Go 

Switch Task 

Pearson Correlation -0.078 a 0.011 0.039 -0.016 0.023 -0.032 

Sig. (2-tailed) < 0.001 0.578 0.059 0.437 0.271 0.118 

N 2344 2344 2344 2343 2343 2343 

M3 Word List 

Immediate 

Pearson Correlation 0.126 a 0.247 a 0.202 a -0.168 a -0.200 a -0.056 a 

Sig. (2-tailed) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.004 

N 2581 2581 2581 2580 2580 2580 

M3 Word List 

Delayed 

Pearson Correlation 0.148 a 0.248 a 0.187 a -0.169 a -0.225 a -0.035 

Sig. (2-tailed) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.087 

N 2460 2460 2460 2460 2459 2459 

M3 Category 

Fluency 

Pearson Correlation -0.016 0.185 a 0.247 a -0.073 a -0.025 -0.026 

Sig. (2-tailed) 0.419 < 0.001 < 0.001 < 0.001 0.208 0.181 

N 2581 2581 2581 2580 2580 2580 

M3 Backward Digit 

Span 

Pearson Correlation 0.004 0.089 a 0.117 a -0.025 -0.015 -0.006 

Sig. (2-tailed) 0.852 < 0.001 < 0.001 0.204 0.446 0.776 

N 2582 2582 2582 2581 2581 2581 

M3 Number Series Pearson Correlation -0.078 a 0.041 b 0.090 a -0.026 0.038 -0.019 

Sig. (2-tailed) < 0.001 0.038 < 0.001 0.190 0.056 0.352 

N 2517 2517 2517 2516 2516 2516 

M3 30 Second and 

Counting Task 

Pearson Correlation -0.069 a 0.056 a 0.104 a -0.017 0.029 -0.018 

Sig. (2-tailed) < 0.001 0.005 < 0.001 0.400 0.145 0.354 

N 2556 2556 2556 2555 2555 2555 

M3 Stop and Go 

Switch Task 

Pearson Correlation -0.062 a 0.057 a 0.053 a -0.070 a -0.005 -0.030 

Sig. (2-tailed) 0.002 0.004 0.008 < 0.001 0.818 0.140 

N 2492 2492 2492 2491 2491 2491 

a Correlation is significant at the 0.01 level (2-tailed). 
b Correlation is significant at the 0.05 level (2-tailed). 

 

 

 

 

 

 

 

 

 

 

 

 

with a greater risk of later impairment. The goal was to exam-

ine whether voice prosody measures show meaningful relation-

ships with individual differences in change over the 10 years. Al-

though having 2 occasions is not ideal for examining patterns of

age-related changes, the results are consistent with previous ag-

ing research investigating different domains of cognitive function-
ing ( Hultsch et al., 1990 ; Karlamangla et al., 2009 ; Salthouse, 1996 ).

First, the expected relationships with age were found, with older

people showing greater declines over the 10 years compared to

younger people. Second, the extent of change across measures is

consistent with previous work; for example, Digit Symbol Back-

wards does not show significant declines until later in life, whereas
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Fig. 1. Relationship of jitter to cognitive change. 

Table 4 

Multilevel model results for Word List Immediate. 

Model B SE p CI 95 

1 (Intercept) -0.217 0.331 0.513 -0.866; 0.433 

Time -0.036 0.179 0.840 -0.388; 0.315 

Pitch 0.001 0.001 0.306 -0.001; 0.003 

Pulse 0.000 0.000 0.897 0.000; 0.000 

Voice breaks -0.001 0.003 0.605 -0.007; 0.004 

Jitter 0.022 0.062 0.718 -0.099; 0.143 

Shimmer 0.001 0.020 0.956 -0.039; 0.041 

Amplitude 0.384 0.409 0.347 -0.417; 1.185 

Age -0.021 a 0.001 < 0.001 -0.024; -0.018 

Sex 0.398 a 0.042 < 0.001 0.316; 0.5481 

Education 0.067 a 0.006 < 0.001 0.055; 0.078 

Neurological conditions -0.157 a 0.042 < 0.001 -0.240; -0.075 

Depressive symptoms -0.018 0.052 0.730 -0.119; 0.084 

Chronic conditions -0.017 c 0.008 0.033 -0.032; -0.001 

Time x pitch -0.001 0.001 0.288 -0.002; 0.001 

Time x pulse 0.000 c 0.000 0.045 0.000; 0.000 

Time x voice breaks 0.005 b 0.002 0.006 0.001; 0.008 

Time x jitter -0.073 c 0.036 0.040 -0.143; -0.003 

Time x shimmer 0.000 0.012 0.989 -0.024; 0.023 

Time x amplitude -0.205 0.205 0.317 -0.607; 0.197 

a Significant at the 0.001 level (2-tailed). 
b Significant at the 0.01 level (2-tailed). 
c Significant at the 0.05 level (2-tailed). 

 

 

 

 

 

Table 5 

Multilevel model results for Word List Delayed. 

Model B SE p CI 95 

1 (Intercept) 0.509 0.338 0.133 -0.155; 1.172 

Time -0.267 0.180 0.139 -0.620; 0.086 

Pitch -0.001 0.001 0.626 -0.003; 0.002 

Pulse 0.000 0.000 0.462 0.000; 0.000 

Voice breaks -0.005 0.003 0.056 -0.011; 0.000 

Jitter 0.075 c 0.061 0.223 -0.045; 0.195 

Shimmer -0.023 0.021 0.253 -0.064; 0.017 

Amplitude 0.352 0.405 0.384 -0.441; 1.145 

Age -0.021 a 0.001 < 0.001 -0.024; -0.018 

Sex 0.391 a 0.043 < 0.001 0.307; 0.476 

Education 0.056 a 0.006 < 0.001 0.044; 0.067 

Neurological conditions -0.107 c 0.043 0.013 -0.192; -0.022 

Depressive symptoms -0.035 0.053 0.518 -0.139; 0.070 

Chronic conditions -0.028 a 0.008 0.001 -0.044; -0.012 

Time x pitch 0.000 0.001 0.586 -0.001; 0.002 

Time x pulse 0.000 0.000 0.188 0.000; 0.000 

Time x voice breaks 0.006 a 0.002 0.000 0.003; 0.009 

Time x jitter -0.093 b 0.035 0.008 -0.162; -0.024 

Time x shimmer 0.006 0.012 0.603 -0.017; 0.030 

Time x amplitude -0.169 0.203 0.404 -0.567; 0.228 

a Significant at the 0.001 level (2-tailed). 
b Significant at the 0.01 level (2-tailed). 
c Significant at the 0.05 level (2-tailed). 

 

 

 

 

Speed of Processing (Backward Counting) shows significant de-

clines that begin in midlife. Although not definitive, these longitu-

dinal results provide some evidence for the validity of the changes

found. The consistency of results with past work supports the as-

sumption that the changes reflect meaningful differences in cogni-
tive performance over 10 years. In future work, it will be essen-

tial to include additional time points for both cognition and voice

measures to better understand the trajectory of cognitive changes

related to voice changes and to link cognitive and voice changes

directly with risk of impairment. 
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Table 6 

Multilevel model results for Category Fluency. 

Model B SE p CI 95 

1 (Intercept) 0.263 0.295 0.373 -0.315; 0.840 

Time -0.401 b 0.146 0.005 -0.692; -0.121 

Pitch -0.001 0.001 0.420 -0.003; 0.001 

Pulse 0.000 0.000 0.987 0.000; 0.000 

Voice breaks 0.004 0.002 0.102 -0.001; 0.009 

Jitter -0.005 0.053 0.920 -0.109; 0.099 

Shimmer 0.010 0.018 0.556 -0.024; 0.045 

Amplitude 0.108 0.355 0.761 -0.587; 0.803 

Age -0.021 a 0.001 < 0.001 -0.023; -0.018 

Sex -0.054 0.043 0.222 -0.139; 0.031 

Education 0.095 a 0.006 < 0.001 0.083; 0.107 

Neurological conditions -0.104 c 0.043 0.017 -0.189; -0.019 

Depressive symptoms 0.036 0.053 0.504 -0.069; 0.140 

Chronic conditions -0.024 b 0.008 0.003 -0.040; -0.008 

Time x pitch 0.001 0.001 0.283 0.000; 0.002 

Time x pulse 0.000 0.000 0.131 0.000; 0.000 

Time x voice breaks 0.005 a 0.001 0.001 0.002; 0.007 

Time x jitter -0.077 b 0.029 0.009 -0.134; -0.019 

Time x shimmer 0.014 0.010 0.156 -0.005; 0.033 

Time x amplitude -0.068 0.178 0.703 -0.416; 0.281 

a Significant at the 0.001 level (2-tailed). 
b Significant at the 0.01 level (2-tailed). 
c Significant at the 0.05 level (2-tailed). 

 

 

 

 

 

 

Fig. 2. Relationship of pulse to cognitive change. 

 

 

 

 

 

 

 

 

 

Some results were consistent with predictions based on past

work on voice and dementia. The results for jitter supported past

AD work in that higher jitter was associated with greater decline

in WLI, WLD, CAT, and SGST reaction time. These cognitive changes

are consistent with other studies of cognitive aging. Jitter is gener-

ally explained as tiny tremors in the voice, inaudible to the human
Fig. 3. Relationship of voice br
ear, due to the unstable change of pitch frequency affected by ex-

ecutive function decline over time. Jitter has been significantly as-

sociated with AD in past work. The present findings extend this to

a link with cognitive changes in midlife and later life adults who

have not been diagnosed with MCI or AD. 

Some results were inconsistent with past research on voice and

AD. First, lower pulse was associated greater decline in WLI in

contrast to past work in which higher pulse has been associated

with AD. However, pulse is less commonly researched as a voice

biomarker of AD than other voice prosody measures. Past work
eaks to cognitive change. 
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Table 7 

Multilevel model results for Stop and Go Switch Task. 

Model B SE p CI 95 

1 (Intercept) 1.830 a 0.447 < 0.001 0.954; 2.705 

Time -0.585 c 0.260 0.024 -1.094; -0.076 

Pitch 0.001 0.002 0.524 -0.002; 0.004 

Pulse 0.000 0.000 0.220 0.000; 0.000 

Voice breaks -0.001 0.004 0.890 -0.008; 0.007 

Jitter 0.197 c 0.085 0.020 0.031; 0.362 

Shimmer -0.017 0.027 0.542 -0.069; 0.036 

Amplitude -0.366 0.527 0.487 -1.400; 0.668 

Age -0.021 a 0.002 < 0.001 -0.024; -0.017 

Sex -0.194 a 0.051 < 0.001 -0.294; -0.094 

Education 0.040 a 0.007 < 0.001 -0.026; 0.053 

Neurological conditions -0.262 a 0.051 < 0.001 -0.362; -0.161 

Depressive symptoms -0.002 0.063 0.972 -0.125; 0.121 

Chronic conditions -0.022 c 0.010 0.020 -0.041; -0.004 

Time x pitch -0.001 0.001 0.213 -0.003; 0.001 

Time x pulse 0.000 0.000 0.129 0.000; 0.000 

Time x voice breaks 0.002 0.003 0.558 -0.004; 0.007 

Time x jitter -0.166 b 0.053 0.002 -0.270; -0.061 

Time x shimmer 0.013 0.016 0.444 -0.020; 0.045 

Time x amplitude 0.163 0.264 0.538 -0.356; 0.682 

a Significant at the 0.001 level (2-tailed). 
b Significant at the 0.01 level (2-tailed). 
c Significant at the 0.05 level (2-tailed). 

Table 8 

Multilevel model results for Digits Backward. 

Model B SE p CI 95 

1 (Intercept) -0.930 b 0.335 0.005 -1.586; -0.274 

Time 0.182 0.176 0.302 -0.164; 0.528 

Pitch 0.001 0.001 0.346 -0.001; 0.003 

Pulse 0.000 0.000 0.170 0.000; 0.000 

Voice breaks 0.000 0.003 0.966 -0.005; 0.006 

Jitter -0.031 0.062 0.610 -0.152; 0.090 

Shimmer 0.0476 c 0.020 0.026 0.006; 0.086 

Amplitude -0.014 0.413 0.973 -0.823; 0.795 

Age -0.012 a 0.002 < 0.001 -0.001; -0.009 

Sex 0.081 0.045 0.069 -0.006; 0.167 

Education 0.069 a 0.006 < 0.001 0.058; 0.081 

Neurological conditions -0.020 0.045 0.648 -0.108; 0.067 

Depressive symptoms -0.001 0.055 0.987 -0.109; 0.107 

Chronic conditions -0.024 b 0.008 0.005 -0.040; -0.007 

Time x pitch -0.001 0.001 0.310 -0.002; 0.001 

Time x pulse 0.000 0.000 0.444 0.000; 0.000 

Time x voice breaks 0.002 0.002 0.143 -0.001; 0.006 

Time x jitter 0.003 0.035 0.935 -0.066; 0.072 

Time x shimmer -0.017 0.012 0.140 -0.041; 0.006 

Time x amplitude 0.006 0.207 0.977 -0.399; 0.412 

a Significant at the 0.001 level (2-tailed). 
b Significant at the 0.01 level (2-tailed). 
c Significant at the 0.05 level (2-tailed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Multilevel model results for Number Series. 

Model B SE p CI 95 

1 (Intercept) -0.066 0.303 0.828 -0.659; 0.527 

Time -0.308 c 0.152 0.043 -0.605; -0.010 

Pitch 0.000 0.001 0.799 -0.002; 0.002 

Pulse 0.000 0.000 0.583 0.000; 0.000 

Voice breaks 0.003 0.002 0.243 -0.002; 0.008 

Jitter 0.020 0.055 0.721 -0.088; 0.127 

Shimmer -0.016 0.018 0.381 -0.051; 0.020 

Amplitude 0.117 0.364 0.749 -0.598; 0.831 

Age -0.019 a 0.002 < 0.001 -0.022; -0.016 

Sex -0.180 a 0.044 < 0.001 -0.267; -0.094 

Education 0.138 a 0.006 < 0.001 0.126; 0.150 

Neurological conditions -0.077 0.044 0.082 -0.164; 0.010 

Depressive symptoms -0.062 0.055 0.253 -0.169; 0.045 

Chronic conditions -0.026 b 0.008 0.002 -0.042; -0.010 

Time x pitch 0.000 0.001 0.595 -0.001; 0.001 

Time x pulse 0.000 0.000 0.734 0.000; 0.000 

Time x voice breaks 0.001 0.001 0.666 -0.002; 0.003 

Time x jitter -0.046 0.030 0.128 -0.106; 0.013 

Time x shimmer 0.018 0.010 0.071 -0.002; 0.038 

Time x amplitude -0.077 0.183 0.674 -0.435; 0.281 

a Significant at the 0.001 level (2-tailed). 
b Significant at the 0.01 level (2-tailed). 
c Significant at the 0.05 level (2-tailed). 

Table 10 

Multilevel model results for Backwards Counting. 

Model B SE p CI 95 

1 (Intercept) 1.345 a 0.254 < 0.001 0.847; 1.843 

Time -0.191 0.010 0.055 -0.386; 0.004 

Pitch 0.000 0.001 0.907 -0.002; 0.001 

Pulse 0.000 0.000 0.321 0.000; 0.000 

Voice breaks 0.001 0.002 0.457 -0.002; 0.005 

Jitter 0.049 0.042 0.245 -0.033; 0.131 

Shimmer 0.015 0.014 0.275 -0.012; 0.043 

Amplitude -0.176 0.258 0.495 -0.682; 0.330 

Age -0.032 a 0.002 < 0.001 -0.035; -0.029 

Sex -0.254 a 0.046 < 0.001 -0.343; -0.164 

Education 0.082 a 0.006 < 0.001 0.070; 0.095 

Neurological conditions -0.149 b 0.046 0.001 -0.239; -0.059 

Depressive symptoms 0.001 0.056 0.980 -0.109; 0.112 

Chronic conditions -0.029 a 0.009 0.001 -0.045; -0.012 

Time x pitch 0.000 0.000 0.376 0.000; 0.001 

Time x pulse 0.000 0.000 0.422 0.000; 0.000 

Time x voice breaks 0.002 0.001 0.077 0.000; 0.003 

Time x jitter -0.027 0.020 0.182 -0.066; 0.013 

Time x shimmer -0.005 0.007 0.424 -0.018; 0.008 

Time x amplitude 0.068 0.129 0.600 -0.185; 0.320 

a Significant at the 0.001 level (2-tailed). 
b Significant at the 0.01 level (2-tailed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on pulse and AD has mainly used small clinical samples. Our re-

sults contribute information on the relationships between voice

measures and cognitive change in a broader sample and suggest

the need for more research on low pulse as an indicator of cogni-

tive impairment. Additionally, the association between fewer voice

breaks and greater decline in WLI, WLD, and CAT is the reverse of

what was expected based on prior AD literature. This result could

be due to using voice recordings from cognitive assessments rather

than conversational speech. Breaks in conversation may indicate

cognitive problems, whereas breaks during responses to a cogni-

tive test may reflect something about test performance. In other

words, those who remember more words on a memory or cate-

gory fluency test may have more voice breaks if they pause be-

tween words recalled. Future work could compare voice breaks in

different protocols to examine whether voice breaks are valuable

biomarkers for cognitive changes in midlife and later life. 
4.1. Limitations 

The study was limited in that the voice measures were ob-

tained from several tests used to examine cognitive change. Signif-

icant voice measures associated with cognitive change were found

mainly for the 3 tests from which the voice measures were de-

rived. Thus, a dependency between test performance and voice

measures should be addressed in future research. Voice prosody

may reflect the level of performance on a given test. For exam-

ple, if someone is doing well on a memory test, they may have

less jitter. We attempted to address this limitation with sensitivity

analyses that controlled for speech duration (related to how many

words were recalled) and intrusion errors. The same results were

obtained as the primary analyses. It is also noteworthy that the

voice measures were related to change in cognition rather than the

level of performance. In future work, voice measures could be ob-

tained from independent speech that is not tied to cognitive test-
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ing. Nevertheless, there are also some advantages of using cogni-

tive interviews to obtain voice measures in that it controls the pos-

sible range of responses across participants. However, the results

may not generalize to free conversational speech. 

Another potential limitation was that the audio files were

recorded in MP3 format, which is not considered optimal for voice

quality. However, although participant voice recordings were not

recorded in an ideal format (WAV), the optimization function in

Praat enhanced the quality of the voice data. Many past studies

have used the Praat optimization method to make their audio anal-

yses of various formats more reliable. Therefore, this is a minor

concern that likely did not affect the parameters of our study. Fu-

ture research should record participant voices in WAV format, an

option that can be set as default in most recording devices cur-

rently available. 

The MIDUS data set we used had some limiting factors. Al-

though ∼10% of the original cognitive sample at M2 was non-

white, there was a larger percentage of participants in the dropout

group from M2 to M3 that were nonwhite (12.5%) compared to

the longitudinal group (7.5%) ( Hughes et al., 2018 ; Radler and

Ryff, 2010 ). Future research with more diverse samples could pro-

vide more generalizable results. Future research should include

additional covariates such as medication use, smoking, and anx-

iety to control for other possible factors that could be related

to vocal qualities. Also, the sample did not have assessments of

cognitive status or clinical diagnosis. Thus, we do not know if

any participants have some form of cognitive impairment. Fu-

ture studies should consider examining the relationships between

voice prosody measures and cognitive change in a sample that has

midlife and later life participants assessed as healthy or with mild

cognitive impairment or dementia by medical professionals. 

4.2. Future work 

When considering the next steps for this area of research, it

will be essential to test possible mechanisms linking voice features

and cognitive changes. Voice features can potentially be affected

over time by peripheral mechanisms in the body. For example,

changes in pulmonary function can impact vocal cord vibrations

and result in altered jitter and shimmer or can impact subglottal

pressure in the vocal tract and increase amplitude ( Johns et al.,

2011 ). Further, respiratory illness and smoking can cause exces-

sive larynx constriction, resulting in changed pitch ( Garellek, 2014 ).

Though less harmful, smaller mechanisms that are common in res-

piratory illnesses, such as sustained contractions of the laryngeal

muscle and excessive cricothyroid muscle tightening over the vo-

cal fold, can raise pitch and amplitude due to peripheral vocal fa-

tigue ( Roubeau et al., 1997 ; Sieck and Prakash, 1995 ; Simpson and

Rosen, 2008 ). Even without these dysfunctions, the aging of these

muscles over time may lead to dopaminergic deficit, resulting in

lower pitch and amplitude ( Baker, 1998 ; Rampello et al., 2016 ;

Zarzur et al., 2007 ). 

The central nervous system can also be explored as a mech-

anism for understanding the association between voice prosody

and cognitive changes. Brain damage due to trauma or disease

is associated with changes in voice features. Specifically, lesions

to the central nervous systems can result in higher pitch and

lower amplitude ( Arenaza-Urquijo et al., 2015 ; Honer et al., 2012 ;

Ijitona et al., 2016 ; Lesuis et al., 2018 ; Stacey et al., 2017 ). How-

ever, because the brain plays a central role throughout life in phys-

iological changes, brain aging is the ultimate cause of cognitive

decline and degeneration of voice. Age-related changes in cog-

nition and voice are both associated with more structural alter-

ations, more cortical thickness, and reduced gray matter volume

in cortical and subcortical regions related to executive function
and speech production ( Diaconescu et al., 2013 ; Funahashi, 2001 ;

Guenther, 2006 ; Hirano et al., 2004 ; Lieberman, 2007 ; Porter et al.,

2011 ; Tremblay and Deschamps, 2016 ). In these regions, subtle

age-related changes in the dopamine binding potential and re-

ceptor densities of the neural networks can later result in sig-

nificant deterioration in more overt voice parameters, such as

speech response time and articulation accuracy ( Bäckman et al.,

2010 ; Duchin and Mysak, 1987 ; Erixon-Lindroth et al., 2005 ;

MacDonald et al., 2009 ; Nyberg et al., 2016 ; Wang et al., 1998 ).

Peripheral changes due to aging may happen years before cogni-

tive decline is apparent. It is vital to identify the underlying mech-

anisms that link voice biomarkers with cognitive change so that

AD risk can be calculated decades before serious neuropathology

appears. 

4.3. Conclusion 

As the prevalence of AD continues to rise, identifying biomark-

ers that can distinguish significant patterns of cognitive change

from normal cognitive aging as early as possible could be use-

ful for delaying or reducing dementia. Voice, the primary method

of human communication, has the potential for long-term self-

monitoring and medical monitoring of cognitive status because

specific vocal prosody measures are related to changes in cogni-

tive functioning. Voice recordings are a convenient and low-burden

way to obtain biomarkers that may be useful for early detection of

cognitive changes. Analysis of voice biomarkers has the potential

to become a simple and noninvasive procedure for rapid and pre-

cise data collection at any timepoint, ultimately enabling the iden-

tification of risks for cognitive changes and impairment and early

diagnosis of dementia. 
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