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Abstract 

Study Objectives:  Poor sleep and autonomic dysregulation can both disrupt metabolic processes. This study examined the individual 
and combined effects of poor sleep and reduced heart rate variability (HRV) on metabolic syndrome among 966 participants in the 
Midlife in the United States II (MIDUS II) study.

Methods:  Self-reported sleep was assessed using the Pittsburgh Sleep Quality Index (PSQI). HRV was acquired from 11-minute rest-
ing heart rate recordings. Spearman correlations, general linear regression, and logistic regression models were used to examine the 
study hypotheses.

Results:  Poor sleep quality was associated with metabolic syndrome when global PSQI scores were evaluated as a continuous (odds 
ratio [OR]: 1.07, 95% confidence interval [CI]: 1.03 to 1.11) or categorical measure (cutoff > 5, OR: 1.58, 95% CI: 1.19 to 2.10), after adjust-
ment for confounding. There also was an association between reduced HRV and metabolic syndrome (ln [HF-HRV] OR: 0.89, 95% 
CI: 0.80 to 0.99; ln [LF-HRV] OR: 0.82, 95% CI: 0.72 to 0.92; ln [SDRR] OR: 0.59, 95% CI: 0.43 to 0.79; ln [RMSSD] OR: 0.75, 95% CI: 0.60 to 
0.94). When the combined effects of poor sleep and low HRV were examined, the association with metabolic syndrome was further 
strengthened relative to those with normal sleep and HRV.

Conclusions:  To the best of the author’s knowledge, this is the first study to suggest a combined effect of poor sleep and low HRV on 
the odds of metabolic syndrome.
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Graphical Abstract 

Hyperglycemia

The Role of Sleep and Heart Rate Variability in Metabolic Syndrome:
Evidence from the Midlife in the United States (MIDUS II) Study
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Metabolic syndrome was 60% more likely in 
those with poor sleep quality (Pittsburgh Sleep 
Quality Index >5) 
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upper SDRR quartiles were 1.69 times less
likely to develop metabolic syndrome  
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Statement of Significance

The current investigation found that poor sleep and low heart rate variability (HRV) were both associated with metabolic syndrome 
and that the odds of metabolic syndrome were strongest among those with both poor sleep quality and low HRV. These findings 
highlight the potential for targeting both HRV and sleep to noninvasively reduce or prevent metabolic syndrome and related chron-
ic diseases.

Introduction
Metabolic syndrome has become more common over the last 20 
years, with a current estimated prevalence of 25%–37% among 
adults in the general population [1]. Also known as cardiometa-
bolic syndrome, it is characterized by a complex combination of 
hypertension, abdominal adiposity, impaired glucose tolerance, 
and dyslipidemia [2]. Each component of metabolic syndrome is 
a clinically relevant risk factor for multiple chronic disease states, 
including cardiovascular disease, diabetes and their associated 
sequelae, and increased mortality risk [3]. The specific patho-
physiological processes by which the individual or aggregate 
components of metabolic syndrome confer an increased risk of 
adverse health outcomes are still unclear [4]. Developing a bet-
ter understanding of how modifiable risk factors such as sleep 
and autonomic activity may influence the metabolic syndrome 
disease continuum may help to establish more effective disease 
prevention strategies.

The prevalence of poor sleep, specifically short sleep duration, 
has increased over time in conjunction with the increased preva-
lence of metabolic disorders and obesity in the United States [5]. 
Sleep plays a major role in regulating and optimizing many phys-
iological processes, including metabolic homeostasis [5, 6]. Both 
subjective and objective (actigraphy, polysomnography) measures 
have been used to assess sleep pathology, and previous research 
has shown a modest overlap between the two, although they may 
also be measuring somewhat different aspects of the sleep/wake 
cycle [7]. In a meta-analysis evaluating the relationship between 

sleep duration and metabolic syndrome, the pooled odds ratio 
(OR) for metabolic syndrome among those with sleep duration 
<7 h was 1.23 (95% confidence interval [CI]: 1.11 to 1.37) compared 
to individuals with daily sleep duration of 7–8 h [8]. A dose-re-
sponse relationship was also observed between reduced sleep 
duration and increased odds of metabolic syndrome [8]. Cross-
sectional studies using self-reported sleep quality measures such 
as the Pittsburgh Sleep Quality Index (PSQI) have also reported 
positive associations with metabolic syndrome or its individual 
components [9–11].

The autonomic nervous system (ANS) plays a critical role in 
regulating cardiovascular and metabolic function as well as sleep 
physiology. Sympathetic nervous system (SNS) activity is elevated 
during the stress response and mobilizes the body for action, for 
example, by increasing heart rate and blood pressure, releasing 
energy reserves, and inhibiting the gastrointestinal tract [12, 13]. 
Parasympathetic activity, mediated by the vagus nerve, gener-
ally opposes sympathetic activity. Heart rate variability (HRV) 
refers to the variation in heart rate over time and is considered 
an objective measure of both sympathetic and parasympathetic 
ANS activity [13–15]. Heart rate is influenced by the baroreflex, 
which maintains blood pressure homeostasis [16, 17]. A stronger 
baroreflex results in more efficient blood pressure maintenance 
and higher HRV [16, 17]. Analyses of HRV commonly utilize time 
and frequency domain indices [15, 18]. Time-domain indices 
quantify the amount of HRV observed over the course of the mon-
itoring period, whereas frequency-domain measures characterize 
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repetitive physiological processes such as the respiratory cycle. 
Both time and frequency domain HRV measures quantify the 
complex and dynamic interplay between the SNS and the para-
sympathetic nervous system (PNS). Time-domain HRV measures 
include the standard deviation of all NN or RR intervals (SDNN 
or SDRR) and the square root of the mean squared difference 
of successive RR intervals (RMSSD) to quantify the variability in 
measurements of interbeat intervals [15]. Low-frequency HRV 
(LF-HRV) increases in response to both the PNS and SNS activity, 
whereas high-frequency HRV (HF-HRV) increases in response to 
PNS activation [15]. SDNN and SDRR reflect both SNS and PNS 
activity and tend to correlate with LF-HRV depending on meas-
urement conditions. RMSSD is well-correlated with HF-HRV and 
PNS activity [15].

Elevated HRV is associated with a greater capacity to regulate 
stress and emotions [19–21], whereas low HRV is maladaptive 
and has been associated with cardiac complications, psycho-
logical and neurological disorders, and increased mortality, par-
ticularly among those with underlying chronic disease [21–28]. 
The ANS regulates major metabolic processes including blood 
pressure and the disposition of blood glucose and lipids, as well 
as the secretion of immune and endocrine mediators that influ-
ence these processes. Reduced HRV has been associated with 
adverse changes in several metabolic syndrome components, 
including waist circumference, triglycerides, high-density lipo-
protein (HDL), blood pressure, and serum glucose [29–31]; how-
ever, activation of the SNS and suppression of the PNS are not 
part of the diagnostic criteria [32–35]. HRV indices were lower in 
individuals with multiple components of metabolic syndrome, 
and HRV decreased as the number of individual metabolic com-
ponents achieving criterion values increased [36]. Korean adults 
with metabolic syndrome had lower mean HRV measures, and all 
metabolic syndrome components were negatively correlated with 
HRV [24, 33, 37]. Interventions targeting the ANS are under inves-
tigation to address metabolic syndrome components, including 
hypertension and diabetes [38, 39]. Sleep disturbances have been 
associated with autonomic irregularities [40–46]. Alternatively, 
the restorative properties of sleep are thought to be related to the 
parasympathetic dominance that occurs during non-rapid eye 
movement sleep [47–49].

Autonomic activity and sleep are both essential physiological 
processes that influence metabolic function, and both respond to 
physiological and psychological stressors. Primary ANS functions 
are to maintain homeostasis and facilitate stress adaptation, 
whereas sleep facilitates homeostasis but also reflects circadian 
timing. Metabolic processes are strongly influenced by endog-
enous circadian timing, and poor sleep can signify circadian 
rhythm disruption in some circumstances [50]. To the best of the 
author’s knowledge, no studies have examined the combined role 
of these risk factors in relation to metabolic syndrome. This study 
tested the hypothesis that metabolic syndrome is associated with 
poor sleep and reduced HRV, both individually and in combina-
tion, in a nationally representative sample of US Adults from the 
Midlife Development in the United States (MIDUS) study [51].

Methods
Study population and procedures
Data from the (MIDUS) II survey and biomarker projects were 
downloaded from the Inter-University Consortium for Political 
and Social Research online repository [51, 52]. MIDUS II (2006–
2008) is a follow-up of the first MIDUS participants (1995–1996) 

that prospectively examined the role of behavioral, psychological, 
and social factors in age-associated physical and mental health 
outcomes. The MIDUS II biomarker project assessed a subsam-
ple of 1255 participants to ascertain biopsychosocial pathways 
that contribute to physical and psychological health outcomes, 
including metabolic syndrome. Participants of the MIDUS II bio-
marker project were recruited from the original MIDUS study and 
traveled to one of three General Clinical Research Centers (CRCs) 
for a clinical assessment. Members of the Milwaukee sample of 
African Americans and the twin study were also recruited. For 
this analysis, data from 966 participants with complete meas-
ures of HRV, metabolic syndrome components, and PSQI-derived 
sleep metrics were utilized. Data were collected during a 24-hour 
stay at one of the three clinics using a standardized protocol that 
included fasting blood samples, 12 h urine sample collection, a 
detailed medical history, physical examination, and question-
naires, as described previously [51]. Participants gave their writ-
ten informed consent, and each MIDUS research center obtained 
institutional review board approval.

Measures
Metabolic syndrome. 
The biomarkers included in this analysis targeted the ANS, hypo-
thalamic-pituitary-adrenal axis function, and processes that 
characterize metabolic syndrome [51]. The presence of meta-
bolic syndrome was ascertained according to criteria established 
by the National Cholesterol Education Program III (ATP III) [2]. 
Participants were classified as having metabolic syndrome if they 
met at least three of the following criteria: waist circumference > 
102 cm for men and >88 cm for women; triglycerides ≥ 150 mg/dL, 
HDL cholesterol < 40 mg/dL for men and <50 mg/dL for women; 
blood pressure ≥ 130/85 mmHg; or serum glucose ≥ 110 mg/dL.

Sleep. 
Sleep was assessed using the PSQI, which consists of 19 self or 
bed-partner-rated questions that are used to characterize sleep: 
quality, onset latency, duration, efficiency, medication use, distur-
bance, and daytime dysfunction [53]. Each individual sleep com-
ponent ranges from 0 to 3, and the global sleep score used in the 
primary analysis is a composite of seven components with scores 
ranging from 0 to 21, with increasing values indicating poorer 
sleep quality. A global score >5 was used as the cutoff for poor 
overall sleep [53, 54].

HRV. 
Following an overnight stay at one of the CRCs, a breakfast meal 
that included abstinence from caffeine consumption was pro-
vided, and a standardized clinical assessment that included HRV 
electrophysiology was implemented using a previously described 
protocol [51, 55]. Electrocardiogram (ECG) electrodes were placed 
on the left and right shoulder and the lower-left quadrant. A 
respiration band was placed around the chest, and a Finometer 
beat-to-beat blood pressure cuff was placed around the middle 
finger of the participant’s nondominant hand. While partici-
pants were in a seated position, data were recorded during an 
11-minute baseline assessment, and those data were used for 
this analysis. ECG data were digitized at a sampling rate of 500 
Hz by a 16-bit National Instruments analog to the digital board 
(National Instruments, Austin, TX), and custom proprietary soft-
ware was then used to identify R waves. Research staff visually 
inspected all ECG waveforms for artifacts. Time-domain indices 
used in the analysis included the SDRR and RMSSD. Frequency 
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domain indices used in the analysis included the high (HF-HRV; 
0.15–0.50 Hz) and low (LF-HRV; 0.04–0.15 Hz) spectral power fre-
quency bands, which were calculated using interval methods for 
fast Fourier transformation [56]. The mean value of the HF-HRV 
and LF-HRV was computed from two 300-second epochs. HF-HRV 
and LF-HRV values were natural-log transformed (ln) prior to 
analysis [15].

Covariates. 
Covariates including age, sex, education, race, marital status (sin-
gle/never married, married or living with a partner, and widowed/
divorced), general health, and smoking status were obtained from 
self-report questionnaires. Regular exercise and certain comor-
bid conditions (heart disease, diabetes, and depression) were 
included as they are known to influence cardiometabolic factors, 
sleep, and HRV [15, 57–59]. Other covariates included medications 
known to influence HRV, sleep, or metabolic factors, including 
cholesterol-lowering agents and medications that may increase 
(cholinergic agents and β-adrenergic blocking agents) or decrease 
(barbiturates, benzodiazepines, antidepressants, antipsychotics, 
and phenothiazines) PNS activity [59].

Data analysis
Analyses were performed using SAS version 9.4 (Cary, NC). The 
characteristics of those with and without metabolic syndrome 
were compared using chi-square tests for categorical variables 
and t-tests or Wilcoxon rank-sum tests for continuous variables 
depending on whether or not the normality assumption was met, 
respectively. These bivariate analyses identified candidate con-
founders for subsequent analyses (p ≤ .20). Candidate confound-
ers were included in the final adjusted general linear or logistic 
regression models if the variable changed the beta coefficient of 
the variable of interest by ≥10% or if it was a statistically signifi-
cant predictor of the outcome (p ≤ .05). Linear regression assump-
tions were evaluated by examining the final model’s residuals;, 
and no violations were observed.

Data analyses initially examined the relationship between 
global PSQI scores, HRV indices, and individual components of 
metabolic syndrome (dependent variables) using Spearman cor-
relations. These analyses were performed among all participants 
and then repeated with stratification among those with and 
without metabolic syndrome and further stratified by the pres-
ence of three, four, and five metabolic syndrome components. 
Multivariable logistic regression was then used to estimate the 
independent association between poor sleep using the global 
PSQI score and its individual components (quality, onset latency, 
duration, efficiency, medication use, disturbance, and daytime 
dysfunction) or low HRV on metabolic syndrome by calculating 
the OR and CI. The independent variables of interest for this 
analysis included the PSQI score as a continuous or categorical 
variable (global PSQI sleep score >5 vs ≤ 5) and log-transformed 
continuous values of each HRV variable (ln LF-HRV, ln HF-HRV, ln 
SDRR, and ln RMSSD). In exploratory analyses, individual compo-
nents of the PSQI were examined separately.

To evaluate the individual and combined effect of poor sleep 
and reduced HRV on the odds of metabolic syndrome, separate 
multivariable logistic regression models were fit using global 
PSQI sleep score as a continuous or categorical variable, a single 
HRV measure of interest (ln LF-HRV, ln HF-HRV, ln SDRR, and ln 
RMSSD), and the interaction term between the individual sleep 
and HRV measures. Separate models were used to examine the 
potential interaction between the global PSQI score and each 

HRV measure in relation to the odds of metabolic syndrome. 
Interaction terms with p-values ≤ .20 were selected for subse-
quent stratified analyses. Participants were separated into groups 
with low (first HRV quartile) and high HRV (quartiles 2–4), and 
the association between global PSQI score (independent varia-
ble) or individual PSQI components (independent variable) and 
metabolic syndrome (dependent variable) was assessed within 
each stratum. In supplemental analyses, general linear regres-
sion models were used to compute adjusted (least-squares or LS) 
means of each HRV measure among the participants with good 
and poor sleep (global PSQI sleep score > 5) and among partici-
pants stratified by metabolic syndrome.

Finally, Spearman correlations or adjusted general linear 
regression models were used to examine the relationship between 
PSQI scores, HRV indices, and individual components of metabolic 
syndrome (dependent variables) as supplementary analyses.

Results
Demographic characteristics
Among the 1255 MIDUS II biomarker project participants, 966 had 
complete PSQI, metabolic syndrome, and HRV data. The study 
population was primarily female (55%) and married (66%), with 
a mean age (±SD) of 54 ± 11 years (Table 1). Metabolic syndrome 
was present in 36% of the study sample, and participants with 
and without metabolic syndrome did not differ by age, mari-
tal status, cancer history, or depression (Table 1). Participants 
with metabolic syndrome had greater waist circumference, less 
physical activity, and were more likely to have diabetes and to 
take medications for cholesterol management or sex-hormone 
replacement, or medications that affect ANS activity (Table 1). 
Among participants with metabolic syndrome, a majority (60%) 
met the minimum criteria for metabolic syndrome (three com-
ponents). The mean number of metabolic components for all 
participants and those with or without metabolic syndrome was 
2.0 ± 1.4, 3.5 ± 0.7, and 1.2 ± 0.8, respectively.

Relationship between global PSQI score, HRV, 
and individual metabolic syndrome components
Correlation coefficients between global PSQI score and HRV or 
individual metabolic syndrome measures (waist circumference, 
systolic and diastolic blood pressure, HDL, and triglycerides) are 
presented in Supplementary Table S1. Global PSQI scores were 
negatively correlated with ln LF-HRV among participants with 
and without metabolic syndrome, and no other HRV indices were 
correlated with global PSQI scores. When stratified by metabolic 
syndrome severity, global PSQI scores were negatively correlated 
with ln LF-HRV, ln SDRR, and ln RMSSD among participants with 
three metabolic syndrome components. However, no statistically 
significant relationships were observed among the participants 
with four or five metabolic syndrome components. Triglycerides 
were positively correlated with global PSQI scores among those 
with metabolic syndrome, and no other statistically significant 
correlations were noted.

Association between poor sleep or low HRV and 
metabolic syndrome
When analyzing the global PSQI score as a continuous variable, 
the odds of meeting the criteria for metabolic syndrome increased 
by 7% for every one-unit increase (Table 2). Participants who were 
classified as poor sleepers (global PSQI sleep score >5) had 58% 
increased odds of meeting the criteria for metabolic syndrome 
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Table 1.  Demographic characteristics with stratification by the presence of metabolic syndrome, MIDUS II study, 2004–2009 (n = 966)

Characteristics 

Overall (n = 966) Without metabolic  
syndrome* (n = 622) 

With metabolic  
syndrome (n = 344) 

P† 

Mean ± SD or n (%)

Age (years) 54.0 ± 11.6 53.7 ± 11.9 54.5 ± 10.9 .35

Body mass index (kg/m2) 29.7 ± 6.6 27.5 ± 5.6 33.8 ± 6.3 <.01

Waist circumference (cm) 97.3 ± 16.2 91.5 ± 14.3 108.0 ± 13.7 <.01

Metabolic syndrome components

 � Three — — 205 (60) —

 � Four 96 (28)

 � Five 43 (13)

Sex

 � Male 421 (44) 268 (43) 153 (45) .68

 � Female 545 (56) 354 (57) 191 (56)

Marital status

 � Single 99 (10) 62 (10) 37 (11) .28

 � Married 640 (66) 423 (68) 217 (63)

 � Divorced/widowed/separated 227 (24) 137 (22) 90 (26)

Current smoker

 � Yes 139 (14) 83 (13) 56 (16) .22

 � No 826 (86) 538 (87) 288 (84)

Regular physical activity at least three times/week

 � Yes 749 (76) 511 (82) 238 (69) <.01

 � No 217 (24) 111 (18) 106 (31)

Hypertension

 � Yes 324 (34) 155 (25) 169 (49) <.01

 � No 642 (67) 467 (75) 175 (51)

Cancer

 � Yes 125 (13) 75 (12) 50 (15) .27

 � No 841 (87) 547 (88) 294 (86)

Diabetes

 � Yes 109 (11) 31 (5) 78 (23) <.01

 � No 857 (89) 591 (95) 266 (77)

Depression

 � Yes 179 (19) 108 (17) 71 (21) .21

 � No 787 (82) 514 (83) 273 (79)

Cholesterol medication

 � Yes 265 (27) 138 (22) 127 (37) <.01

 � No 701 (73) 484 (75) 217 (63)

Sex-hormone medication

 � Yes 108 (11) 79 (13) 29 (8) .04

 � No 858 (89) 543 (87) 315 (92)

Medications that increase PNS activity

 � Yes 138 (14) 67 (11) 71 (21) <.01

 � No 828 (86) 555 (89) 273 (79)

Medications that decrease PNS activity

 � Yes 178 (18) 103 (17) 75 (22) .04

 � No 788 (82) 519 (83) 269 (78)

*Metabolic syndrome is defined according to the National Cholesterol Education Program Expert Panel criteria [2].
†Calculated with independent sample t-tests or Wilcoxon rank-sum test (for continuous variables with normal and skewed distributions, respectively), and chi-
square tests (for categorical variables) for participants with and without metabolic syndrome.
SD, standard deviation; PNS, parasympathetic nervous system.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/46/5/zsad013/7023664 by U

niversity of W
isconsin System

 user on 03 D
ecem

ber 2024



6  |  SLEEP, 2023, Vol. 46, No. 5

(Table 2) versus referents. Each of the PSQI components (contin-
uous variables) had a statistically significant positive association 
with metabolic syndrome, with the exception of sleep efficiency 
and sleep medication use, after adjustment for confounding 
(Supplementary Table S5). Finally, a one-unit increase in each 
HRV measure (HF-HRV, LF-HRV, SDRR, or RMSSD) was associated 
with decreased odds of metabolic syndrome (Table 2).

Combined association of poor sleep and low HRV 
with metabolic syndrome
When the relationship between global PSQI score and metabolic 
syndrome was stratified by HRV status, the results were mixed 
depending on the HRV measure that was evaluated. For LF-HRV 
(≤103 ms2) and SDRR (≤23 ms), an association between global PSQI 
score and metabolic syndrome was only observed among those 
with low HRV levels (Table 3). However, when participants were 
stratified based on HF-HRV or RMSSD, the relationship between 
global PSQI score and metabolic syndrome was similar in both 
strata (Table 3). The greatest odds of metabolic syndrome tended 
to occur among the participants with both low HRV and poor 
sleep quality (global PSQI scores > 5). Among the individual PSQI 
sleep components, poor sleep quality, latency, duration, sleep dis-
turbance, and daytime dysfunction tended to be most strongly 
associated with metabolic syndrome within strata of low LF-HRV 
or SDRR (Supplementary Table S6).

In supplementary analyses, participants with metabolic 
syndrome had an inverse relationship between global PSQI 
score and ln LF-HRV after adjustment for confounding factors 
(Supplementary Table S2). However, there was no relationship 
between the global PSQI score and any of the HRV measures 
among participants without metabolic syndrome or in the entire 
sample combined (Supplementary Table S2). There were modest 
differences in mean adjusted global PSQI scores between those 
with and without metabolic syndrome (Supplementary Table S3). 

Participants without metabolic syndrome had higher adjusted 
mean HRV estimates compared to those with metabolic syn-
drome (Supplementary Table S3). Among all participants, there 
were no notable differences in adjusted mean HRV measures 
between those with and without poor sleep (Supplementary 
Table S4). Among participants with metabolic syndrome, those 
with good sleep had higher mean values of ln LF-HRV relative 
to those with poor sleep. There were no other statistically sig-
nificant differences among the other LS mean HRV estimates 
(Supplementary Table S4).

Discussion
In this population-based sample of middle-aged, older adults in 
the United States, poor sleep and reduced HRV were both indi-
vidually associated with metabolic syndrome after controlling 
for relevant covariates. Participants with global PSQI score >5 had 
~58% increased odds of meeting the metabolic syndrome criteria 
compared to participants with better sleep profiles, and a one-
unit increase in ln (HRV) values were associated with a ~11%–41% 
decreased odds of metabolic syndrome. When the PSQI subscales 
were examined, poor sleep quality, shorter sleep duration, longer 
sleep latency, sleep disturbance, and daytime dysfunction each 
exhibited independent associations with metabolic syndrome. It 
was unclear whether changes in certain metabolic components 
may be more influential in driving these associations, although 
correlations were strongest between global PSQI scores and tri-
glycerides both in the total sample and among those with meta-
bolic syndrome. To the best of the authors’ knowledge, this study 
was the first to examine the combined effects of HRV and poor 
sleep on metabolic syndrome. A relationship between poor sleep 
and low HRV (primarily LF-HRV or SDRR) was observed among 
those with metabolic syndrome but not among those without this 
condition (Supplementary Tables S1 and S2). Furthermore, those 

Table 2.  Association between global PSQI sleep score, HRV, and metabolic syndrome*, MIDUS II study, 2004–2009 (n = 966)

Measures 
Metabolic syndrome

Crude OR (95% CI) P Adjusted OR (95% CI) P 

PSQI sleep measures

Global score (continuous)†
1.07 (1.03 to 1.11) <.01 1.07 (1.03 to 1.11) <.01

Global score (categorical)‡

 Good (≤5) Reference Reference

 Poor (>5) 1.62 (1.24 to 2.11) <.01 1.58 (1.19 to 2.10) <.01

HRV

 ln (HF-HRV ms2)§
0.89 (0.81 to 0.99)  .03 0.89 (0.80 to 0.99) .04

 ln (LF-HRV ms2)‖ 0.80 (0.71 to 0.89) <.01 0.82 (0.72 to 0.92) <.01

 ln (SDRR ms)¶
0.57 (0.43 to 0.76) <.01 0.59 (0.43 to 0.79) <.01

 ln (RMSSD ms)#
0.77 (0.62 to 0.95)  .01 0.75 (0.60 to 0.94) .01

ORs for having metabolic syndrome are based on a one-unit change in HRV or continuous PSQI-derived sleep measures. Higher global PSQI sleep scores indicate 
poorer overall sleep with a range of 0–21 (good: ≤5, poor: >5) [53].
CI, confidence interval; HF-HRV, high frequency heart rate variability; LF-HRV, low frequency heart rate variability; SDRR, standard deviation of RR intervals; 
RMSSD, root mean square of successive differences; ms, milliseconds; ln, natural logarithm; PNS, parasympathetic nervous system; PSQI, Pittsburgh sleep quality 
index; OR, odds ratio.
*Metabolic syndrome is defined according to the National Cholesterol Education Program Expert Panel criteria [2].
†Adjusted for age, cholesterol medication, depression, sex, and medications that increase PNS activity (cholinergic agents and β-adrenergic blocking agents), and 
medications that decrease PNS activity (barbiturates, benzodiazepines, antidepressants, antipsychotics, and phenothiazines).
‡Adjusted for age, cholesterol medication, smoking, depression, sex, medications that increase PNS activity, and medications that decrease PNS activity.
§Adjusted for age, cholesterol medication, smoking, sex, and medications that increase PNS activity.
‖Adjusted for age, cholesterol medication, smoking, sex, and medications that increase PNS activity.
¶Adjusted for age, cholesterol medication, sex, and medications that increase PNS activity.
#Adjusted for age, cholesterol medication, smoking, sex, and medications that increase PNS activity.
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with both reduced HRV (LF-HRV, SDRR) and poor self-reported 
sleep (particularly those with global PSQI scores > 5, poor sleep 
quality, shorter sleep duration, and daytime dysfunction) were 
approximately two times as likely to have metabolic syndrome 
compared to those with only one of these risk factors, and the 
results persisted after adjustment for confounding.

The results related to poor sleep quality are consistent with 
previous studies that have examined self-reported sleep using 
global PSQI and its individual components in relation to meta-
bolic syndrome [32, 60]. For example, a population-based study of 
Japanese citizens (N = 1481) reported elevated odds of poor sleep 
among those with metabolic syndrome (females OR: 2.37; 95% CI: 
1.23 to 4.58; males OR: 2.71; 95% CI: 1.45 to 5.07) [10]. In another 
study among participants from the University of Pittsburgh’s 
Adult and Human Behavior Project, poor sleep quality was associ-
ated with metabolic syndrome in a population of middle-aged US 
adults [9]. However, an analysis of multi-ethnic, midlife women 
from the SWAN Sleep Study found no difference in global PSQI 
sleep scores between participants with and without metabolic 

syndrome [61], and a 2012 study among African Americans did 
not find an association between sleep quality and metabolic syn-
drome or its components [62]. Discrepancies among these studies 
may be due to inherent differences in the populations studied 
or heterogeneity of the study designs or analyses that were per-
formed. For example, the samples used in the Hall et al. and the 
Kazman et al. studies [61, 62] consisted of women only, whereas 
the Jennings et al. study [9] was predominately male. Furthermore, 
the mean PSQI global scores for the male dominant (4.6  ±  2.6) 
samples were lower than female samples (6.6 ± 3.8 and 6.2 ± 2.3, 
respectively) [9, 61, 62].

The current analysis was also consistent with previous studies 
that reported greater odds of metabolic syndrome among those 
with reduced time (RMSSD, SDRR) or frequency (LF-HRV, HF-HRV) 
domain HRV measures. A 2010 cross-sectional study utilizing 
data from the PROgnostic indicator OF cardiovascular and cere-
brovascular events (PROOF) cohort study found lower LF-HRV in 
those with metabolic syndrome using short-term HRV recordings; 
and no differences in HF-HRV [35]. A prospective study examining 

Table 3.  Association between global PSQI sleep score* and metabolic syndrome†, stratified by HRV indices, MIDUS II study, 2004–2009  
(n = 966) 

PSQI sleep measures 

Crude OR (95% CI) Adjusted OR (95% CI)

HF-HRV HF-HRV

Low High Low High 

Global sleep score (Continuous)‡
1.07 (1.00 to 1.15) 1.06 (1.02 to 1.11) 1.07 (0.99 to 1.15) 1.07 (1.02 to 1.11)

Global sleep score (Categorical)§

 Good (≤5) Reference Reference Reference Reference

 Poor (>5) 1.85 (1.11 to 3.09) 1.51 (1.10 to 2.07) 1.74 (1.00 to 3.04) 1.49 (1.07 to 2.09)

LF-HRV LF-HRV

Low High Low High

Global sleep score (continuous) ‡
1.12 (1.05 to 1.20) 1.04 (1.00 to 1.08) 1.12 (1.04 to 1.20) 1.04 (0.99 to 1.09)

Global sleep score (categorical)§

 Good (≤5) Reference Reference Reference Reference

 Poor (>5) 2.40 (1.43 to 4.01) 1.34 (0.98 to 1.84) 2.09 (1.20 to 3.65) 1.38 (0.98 to 1.93)

SDRR SDRR

Low High Low High

Global sleep score (continuous)‡
1.15 (1.07 to 1.24) 1.04 (0.99 to 1.08) 1.15 (1.07 to 1.24) 1.04 (0.99 to 1.08)

Global sleep score (categorical)§

 Good (≤5) Reference Reference Reference Reference

 Poor (>5) 2.79 (1.65 to 4.72) 1.31 (0.96 to 1.79) 2.63 (1.48 to 4.68) 1.31 (0.94 to 1.82)

RMSSD RMSSD

Low High Low High

Global sleep score (continuous)‡
1.10 (1.02 to 1.17) 1.06 (1.01 to 1.10) 1.10 (1.02 to 1.18) 1.05 (1.01 to 1.10)

Global sleep score (categorical)§

 Good (≤5) Reference Reference Reference Reference

 Poor (>5) 2.00 (1.19 to 3.34) 1.49 (1.09 to 2.03) 1.84 (1.05 to 3.23) 1.47 (1.05 to 2.05)

ORs for having metabolic syndrome are based on a one-unit change in continuous sleep score. For this analysis, participants in the lowest quartile are considered 
to have reduced HRV (Low HF-HRV: ≤56 ms2; Low LF-HRV: ≤103 ms2; Low SDRR: ≤23 ms; Low RMSSD: ≤103 ms); whereas the remaining three quartiles are 
considered to have nonreduced or normal HRV (High HF-HRV: >56 ms2; High LF-HRV: >103 ms2; High SDRR: >23 ms; High RMSSD: >103 ms). Interaction term 
p-values between global sleep score and individual HRV (HF-HRV, LF-HRV, SDRR, and RMSSD) indices were (.03, <.01, <.01, and <.01, respectively).
CI, confidence interval; HF-HRV, high frequency heart rate variability; LF-HRV, low frequency heart rate variability; SDRR, standard deviation of RR intervals; 
RMSSD, root mean square of successive differences; ms, milliseconds; PNS, parasympathetic nervous system; PSQI, Pittsburgh sleep quality index; OR, odds ratio.
*Higher global PSQI sleep scores indicate poorer sleep quality with a range of 0–21 [53].
†Metabolic syndrome is defined according to the National Cholesterol Education Program Expert Panel criteria [2].
‡Adjusted for cholesterol medication, sex, and medications that increase (cholinergic agents and β-adrenergic blocking agents) and decrease (barbiturates, 
benzodiazepines, antidepressants, antipsychotics, and phenothiazines) PNS activity.
§Adjusted for cholesterol medication, depression, smoking, sex, and medications that increase and decrease PNS activity. 
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early-stage cardiac autonomic dysfunction found that partici-
pants with metabolic syndrome had reduced HRV indices (SDNN, 
LF-HRV, and HF-HRV) relative to healthy controls [32]. Another 
study that examined autonomic activity in a population at risk 
for metabolic syndrome reported decreased SDNN and HF-HRV 
with an increasing number of metabolic syndrome components 
(≥3) [63]. The Twins Heart Study investigated psychological and 
biological risk factors for cardiovascular disease and reported 
that reduced HRV was associated with metabolic syndrome after 
controlling for relevant covariates and genetic factors [64]. A 
case-control study consisting of middle-aged and older working 
men found that participants with metabolic syndrome had lower 
HRV levels compared to healthy controls [65]. The accumulation 
of metabolic syndrome components may be due in part to the 
chronic overactivation of the SNS and subsequent disruption of 
ANS homeostasis, which may contribute to the dysregulation of 
metabolic processes [63, 66]. The ANS plays a vital role in regulat-
ing metabolic processes, but it is unclear whether ANS dysfunc-
tion precedes the development of metabolic syndrome, although 
some evidence supports this possibility [24, 37].

Results from the current analysis indicate that the greatest 
odds of metabolic syndrome occurred among those with both 
poor sleep quality and reduced HRV (primarily LF-HRV and SDRR). 
This suggests that ANS dysfunction and poor sleep are more 
strongly coupled during metabolic syndrome, although studies 
focusing on the temporal sequence between these processes 
and the development of metabolic syndrome would be needed 
to fully elucidate such inter-relationships. There is significant 
bidirectional crosstalk between the ANS and cardiovascular sys-
tems during sleep, and both systems influence metabolic activity. 
During non-rapid eye movement (NREM) sleep, autonomic mod-
ulation driven by vagal PNS activity reduces heart rate and blood 
pressure, whereas REM sleep is primarily under sympathetic con-
trol [67]. In a cross-sectional study of college-aged participants, 
a negative association was observed between self-reported sleep 
latency and LF-HRV (r = −0.262, p = .002) or SDNN (r = −0.137, p = 
.04), although no other relationships were observed between sleep 
quality and HRV indices [44]. In another study, increased LF-HRV 
and decreased HF-HRV were observed in objectively defined 
insomniacs compared to healthy controls during all sleep stages 
[40]. In a cross-sectional analysis of actigraphy-based measures, 
short sleep duration, low sleep efficiency, and insomnia were each 
associated with lower parasympathetic tone and SNS activation 
[41]. Multiple studies have reported that poor sleep disrupts the 
ability of the PNS to modulate sympathetic activity [68–70]. In 
the Penn State Adult Cohort study, mortality risk associated with 
metabolic syndrome was twofold greater among those with short 
sleep duration, and those with short sleep had greater central 
autonomic and metabolic dysfunction relative to normal sleep-
ers [71]. The authors speculate that chronic sleep disturbances 
may lead to persistent SNS hyperactivation culminating in the 
exhaustion of the stress response and loss of autonomic and met-
abolic homeostasis [44]. The low LF-HRV values that were associ-
ated with increased odds of metabolic syndrome in the present 
study are consistent with this possibility. Reduced LF-HRV has 
been associated with burnout and exhaustion in workers, and low 
RMSSD is associated with exhaustion from burnout and depres-
sion both under experimental conditions [72–74] and at rest [75]. 
The role of circadian rhythms in regulating metabolic processes 
has been established [50, 76], and poor sleep may be an indica-
tor of circadian disturbances. While circadian rhythms were not 
directly measured or evaluated in the current study, associations 

between metabolic syndrome and shorter sleep duration, day-
time dysfunction, and sleep disturbance may suggest a potential 
role for this pathway. Based on the above evidence, the authors 
have conceptualized the following theoretical model; sleep dis-
ruption may elicit both stress and metabolic desynchronization, 
which combined with other chronic metabolic (inactivity, over-
eating, other poor lifestyle choices and behaviors) and potential 
psychological stressors (anxiety, low self-esteem, depression) can 
lead to ANS disruption, dysregulation, and pathological changes 
in metabolic homeostasis that eventually manifest as metabolic 
syndrome.

This study had several noteworthy strengths and limitations. 
Limitations include a relatively homogeneous sample (~92% 
white and ~42% with a college degree or more). Another limitation 
was that objective sleep measures were not used in the analysis, 
although the PSQI has been extensively validated, including in a 
subset of MIDUS study participants [77]. Additionally, this study 
was not able to evaluate the potential role of obstructive sleep 
apnea (OSA) or sleep-disordered breathing on the development 
of the metabolic syndrome. Previous studies have reported an 
association between OSA and metabolic syndrome or some of its 
components [78, 79], likely due to repetitive oxygen desaturation 
leading to beta cell disruption and subsequent insulin resistance, 
SNS excitation, and the production of inflammation mediators 
[79]. Another limitation is that the study utilized short-term HRV 
recordings in the sitting position. While the results were consist-
ent with previous studies utilizing short-term, nighttime, and 24 h 
HRV recordings, both the nighttime and 24 h measures tended to 
have stronger associations with metabolic syndrome [35]. This 
may suggest a role for sleep or circadian rhythm disturbances as 
a potential contributor to ANS dysregulation and disrupted meta-
bolic homeostasis and is consistent with results from the current 
study. Long-term, 24 h or overnight recordings may contribute to 
a more comprehensive evaluation of various metabolic processes 
potentially including their circadian components [50]. For exam-
ple, a 2010 study examined the relationship between ANS activ-
ity and metabolic syndrome and reported negative associations 
between LF-HRV and metabolic syndrome using 24 h HRV record-
ings that were not apparent using short-term recordings [35]. 
Posture used for HRV data collection is also a potential limita-
tion; however, the literature is mixed regarding optimal position-
ing, and all participants in this study were measured using the 
same standardized procedure [80, 81]. It is possible that some of 
the participants did not meet the National Cholesterol Education 
Program III criteria for metabolic syndrome because they were 
taking medications based on their risk profile for cardiovascu-
lar disease. For example, some participants may have been mis-
classified as not having metabolic syndrome because they were 
taking lipid-lower agents. However, the analyses were adjusted 
for use of cholesterol-lowering agents and other key medications 
when it was appropriate based on the variable selection crite-
ria. Finally, participants were required to travel to one of three 
research centers, which may have introduced selection bias and 
reduced generalizability [51, 82]. Strengths of this study include 
the robust sample size, clinical, and psychosocial assessments 
that were performed using validated measures and standardized 
protocols, and analyses that adjusted for many relevant covari-
ates. One innovation was the evaluation of the potential impacts 
of both poor sleep and low HRV on metabolic syndrome. Due to 
the study’s cross-sectional design, it was not possible to eluci-
date the complex temporal relationships between sleep and HRV 
or their subsequent association with metabolic syndrome, and it 
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was therefore not possible to make causal inferences regarding 
the results.

In conclusion, the current investigation found that poor sleep 
and low HRV were both associated with metabolic syndrome and 
that the odds of metabolic syndrome were strongest among those 
with both poor sleep quality and low HRV (LF-HRV, SDRR). These 
findings highlight the potential for targeting both HRV and sleep 
to noninvasively reduce or prevent cardiometabolic and related 
chronic diseases.

Supplementary Material
Supplementary material is available at SLEEP online.
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