Personality and Risk of Arthritis in Six Longitudinal Samples

Yannick Stephan1*, PhD, Angelina R. Sutin2, PhD, Brice Canada, PhD3, Antonio Terracciano4, PhD

1Euromov, University of Montpellier, Montpellier, France

2Department of Behavioral Sciences and Social Medicine, College of Medicine, Florida State University, Tallahassee, Florida, USA

3L-VIS, University of Lyon 1, Lyon, France

4Department of Geriatrics, College of Medicine, Florida State University, Tallahassee, Florida, USA

*Address correspondence to: Yannick Stephan, PhD. E-mail: yannick.stephan@umontpellier.fr
Abstract

Objectives. Personality traits are broadly related to medical conditions, but there is limited research on the association with the risk of arthritis. This multi-cohort study examines the concurrent and prospective associations between personality traits and arthritis risk.

Method. Participants (N > 45,000) were mostly middle-aged and older adults from six established longitudinal cohorts. Baseline assessments of personality traits, covariates (age, sex, education, race, ethnicity, depressive symptoms, body mass index, and smoking), and arthritis diagnosis were obtained in each sample. Arthritis incidence was assessed over 8 to 20 years of follow-up.

Results. The meta-analyses identified an association between higher neuroticism and an increased risk of concurrent (Odds Ratio= 1.20, 95% CI=1.16-1.24; p<.001, I²= 40.27) and incident (Hazard Ratio= 1.11, 95% CI=1.08-1.14; p<.001, I²= 0) arthritis and between higher conscientiousness and a decreased risk of concurrent (Odds Ratio = 0.88, 95% CI=0.86-0.90; p<.001, I²= 0) and incident (Hazard Ratio= 0.95, 95% CI=0.92-0.98; p=.002, I²= 41.27) arthritis. Higher extraversion was linked to lower risk of concurrent (Odds Ratio= 0.92, 95% CI=0.88-0.96; p<.001, I²= 76.09) and incident (Hazard Ratio= 0.97, 95% CI=0.95-0.99; p=.018, I²= 0) arthritis, and openness was related to lower risk of concurrent arthritis (Odds Ratio= 0.96, 95% CI=0.93-0.99; p=.006, I²= 35.86). Agreeableness was unrelated to arthritis. These association were partially accounted by depressive symptoms, body mass index, and smoking. There was no consistent evidence of moderation by age or sex.

Discussion. Findings from six samples point to low neuroticism and higher conscientiousness as factors that reduce risk of arthritis.

Keywords: Neuroticism; Conscientiousness; Musculoskeletal disease
Arthritis, including its common forms osteoarthritis and rheumatoid arthritis, is a prevalent age-related chronic musculoskeletal disease with substantial societal and individual costs (GBD 2021 osteoarthritis collaborators, 2023). In addition to causing pain and stiffness, arthritis is one primary cause of disability and functional limitations (Baker et al., 2017; GBD 2021 osteoarthritis collaborators, 2023), as well as a financial burden (Hsieh et al., 2020; Puig-Junoy & Zamora, 2015). Furthermore, arthritis is related to a higher risk of incident dementia (Weber et al., 2019), cardiovascular disease (Logstrup et al., 2020), and mortality (Provan et al., 2020; Veronese et al., 2016). Therefore, there is great interest in the factors associated with the risk of arthritis. There is evidence that an older age, fewer years of education, a higher body mass index (BMI), smoking, and higher depressive symptoms are related to a higher risk of arthritis (Brennan-Olsen et al., 2017; GBD 2021 osteoarthritis collaborators, 2023; Mohammed et al., 2020; Poole & Steptoe, 2018; Poole & Jackowska, 2019). However, there is limited research on the extent to which fundamental psychological dispositions, such as personality traits, are associated with the risk of arthritis.

The Five-Factor Model (FFM) (McCrae & John, 1992) postulates that personality traits are organized into five broad dimensions: neuroticism (the propensity to experience negative emotions and distress), extraversion (the propensity to be energetic and sociable), openness to experience (the propensity to be unconventional and to entertain new ideas), agreeableness (the propensity to be altruistic, empathetic, and cooperative) and conscientiousness (the propensity to be organized and self-disciplined). Existing models and research indicate that personality is a robust predictor of health across adulthood (Chapman et al., 2014; Kern & Friedman, 2014; Strickhouser et al., 2017). In particular, higher levels of neuroticism and lower levels of conscientiousness are associated with a higher risk of chronic conditions (Leger et al., 2021; Stephan et al., 2023; Weston et al., 2020), lower functional health (Stephan et al., 2022), higher limitations in activities of daily
living (IADL) (Canada et al., 2021), and geriatric syndromes such as frailty (Gale et al., 2017; Stephan et al., 2017) and falls (Canada et al., 2020). Furthermore, these traits are related to steeper memory decline (Sutin et al., 2023), higher risk of incident dementia (Aschwanden et al., 2020), and mortality (Graham et al., 2017).

Personality traits may be associated with arthritis through a range of risk factors. Higher levels of neuroticism and lower levels of conscientiousness, for example, are linked to depressive symptoms (Hakulinen et al., 2015a), higher BMI (Sutin & Terracciano, 2016; Vainik et al., 2019), smoking (Hakulinen et al., 2015b), allostatic load (Yoneda et al., 2023), immunosenescence (Stephan et al., 2023a), and mitochondrial dysfunction (Oppong et al., 2022), which are implicated in pathways leading to arthritis (Chalan et al., 2015; GBD 2021 osteoarthritis collaborators, 2023; Mohammed et al., 2020; Poole & Steptoe, 2018; Schwetlik et al., 2021; Svendsen et al., 2019). In addition, these traits are associated with a heightened stress reactivity to daily stressors, which may mediate their link with the development of chronic conditions (Leger et al., 2021). Given that higher stress has been implicated in arthritis risk (Schwetlik et al., 2021), it is possible that the higher stress reactivity associated with these traits may also amplify the risk of arthritis.

There is, however, limited evidence for the link between personality and arthritis. To the best of our knowledge, only one study examined this association. Using four years of follow-up in the Health and Retirement Study, higher neuroticism and lower conscientiousness were associated with an increased arthritis risk in cross-sectional and longitudinal analyses (Weston et al., 2015). Higher agreeableness and openness were associated with lower risk of arthritis (concurrent and incident), whereas higher extraversion was associated with lower risk of arthritis (concurrent but not incident)(Weston et al., 2015). The strongest associations with arthritis were found for neuroticism and conscientiousness in cross-sectional and longitudinal analyses (Weston et al.,
2015). However, whether these findings replicate across different samples and over longer follow-ups remains to be tested.

This large-scale multi-cohort study examined data from six large longitudinal samples to test the concurrent and prospective associations between personality and arthritis. Using the same analytic approach across multiple samples allows for testing the replicability, generalizability, and heterogeneity of results across cohorts with different characteristics (Graham et al., 2017, 2022; Hofer & Piccinin, 2009; Willroth et al., 2022). Based on past research (Leger et al., 2021; Stephan et al., 2023a; Weston et al., 2015), it was predicted that higher neuroticism would be related to an increased risk of concurrent and incident arthritis, whereas it was hypothesized that higher conscientiousness would be related to a decreased risk of concurrent and incident arthritis. No specific predictions were made for extraversion, openness, and agreeableness. Sensitivity analyses tested if the association between personality and arthritis was accounted by psychological (depressive symptoms), clinical (BMI), and behavioral (smoking) factors. These factors could be confounding but also mediator variables of this association, suggesting potential pathways that link personality to arthritis risk. Finally, exploratory analysis tested whether age and sex moderated the link between personality and arthritis to evaluate generalizability across age and sex.

Method

Participants

Six samples were used in the present study: Midlife in the United States Study (MIDUS); Health and Retirement Study (HRS); Wisconsin Longitudinal Study (WLS); National Health and Aging Trends Study (NHATS); English Longitudinal Study of Ageing (ELSA); and Longitudinal Internet studies for the Social Sciences (LISS). These six studies were selected because they included a measure of the FFM personality traits, repeated assessment of arthritis over time, and
were freely available. Although these datasets have been used to examine the association between personality and various health outcomes in past research (Stephan et al., 2021, 2022, 2023b), the link with arthritis has never been tested in the MIDUS, the WLS, the NHATS, and ELSA. Weston et al. (2015) used only the 2006 subsample of the HRS with a four years follow-up up to the 2010 wave to test this relationship. All participants in the six samples provided written informed consent. The present study was exempt from Institutional Review Board (IRB) review because it used publicly available de-identified data. Table 1 includes descriptive statistics for the six samples.

MIDUS is a longitudinal survey of non-institutionalized Americans. A total of 6,078 individuals (53% women; Age range= 20-75 years; Mean Age= 46.80; SD= 12.90) had full baseline data on personality, demographic factors, and arthritis diagnosis in 1995-1996. From this sample, 3,965 participants had information about arthritis in 2004-2006 and 2013-2014. MIDUS data can be accessed at http://midus.wisc.edu/index.php.

HRS is a nationally representative cohort study of Americans (age ≥ 50). Baseline data on personality traits, demographic factors, and arthritis were obtained in 2006/2008 from a total of 12,648 participants (58% women; Age Range= 50-104 years; Mean Age= 68.58; SD= 9.90). Follow-up data on arthritis was obtained every two years up to 2020. From the initial sample, information on arthritis at follow-up was obtained from 11,737 participants. HRS data can be accessed at https://hrs.isr.umich.edu/data-products.

WLS recruited Wisconsin high school graduates and their selected siblings and has followed them over time. Personality, demographic factors, and arthritis data were obtained in 1992-1994 from 10,008 participants (53% women; Age range= 29-79 years; Mean Age=53.30;
SD=4.30). Information about arthritis at follow-up was obtained in 2003-2007 and 2011 from 8,648 participants. WLS data can be accessed at [http://www.ssc.wisc.edu/wlsresearch/data/](http://www.ssc.wisc.edu/wlsresearch/data/).

NHATS is a longitudinal survey of a nationally representative sample of Medicare enrollees aged 65 and older. A total of 2,770 individuals (59% women, Age Range= 67-103 years; Mean Age = 79.49, SD = 7.52) had data on personality, demographic factors, and arthritis in 2013/2014. Follow-up information on arthritis was collected annually up to 2022 from 2,395 individuals. NHATS data can be accessed at: [http://www.nhats.org](http://www.nhats.org).

ELSA is a cohort study that recruited a nationally representative sample of people aged ≥ 50 in England. At Wave 5 in 2010/2011, 8,115 individuals (55% women, Age Range= 50-89 years; Mean Age= 66.10; SD= 8.69) provided complete data on personality, demographic factors, and arthritis. Information on arthritis was collected every two years up to Wave 9 (2018/2019) and were obtained from 7,502 participants. ELSA data can be accessed at: [https://www.ukdataservice.ac.uk/](https://www.ukdataservice.ac.uk/).

The LISS panel is a representative longitudinal sample of the Dutch population. In 2007, 5,794 individuals (54% women; Age Range= 16-94 years; Mean Age= 45.81; SD= 15.66) had data on personality, demographic factors, and arthritis. From this sample, 4,964 participants had information about arthritis at follow-up. LISS data can be accessed at: [www.lissdata.nl](http://www.lissdata.nl).

**Measures**

**Personality.** The “Midlife Development Inventory” (MIDI) was used to assess personality in the MIDUS (25-item version), HRS (26-item version), NHATS (10-item version), and ELSA (26-item version)(Zimprich et al., 2012). A scale from 1 (not at all) to a value of 4 (a lot) for participants to evaluate how much adjectives measuring neuroticism (nervous), extraversion (outgoing), openness (curious), agreeableness (caring) and conscientiousness (organized)
described them. The “Big Five Inventory” was used in the WLS (John et al., 1991). Respondents chose from 1 (disagree strongly) to 6 (agree strongly) on 29 brief descriptive statements, like: “To what extent do you agree that you see yourself as someone who gets nervous easily?” (neuroticism), “To what extent do you agree that you see yourself as someone who is full of energy?” (extraversion), “To what extent do you agree that you see yourself as someone who has an active imagination?” (openness), “To what extent do you agree that you see yourself as someone who likes to cooperate with others?” (agreeableness) and “to what extent do you agree that you see yourself as someone who does things efficiently?” (conscientiousness). The “International Personality Item Pool” (IPIP) was used in the LISS (Goldberg et al., 2006). Participants used a scale from 1 (very inaccurate) to a value of 5 (very accurate) to rate 50 items. Examples are: “get stressed out easily” (neuroticism), “talk to a lot of different people at parties” (extraversion), “have a vivid imagination” (openness), “have a soft heart” (agreeableness), and “like order” (conscientiousness). Mean scores were calculated for each trait in the six samples, with higher means indicating higher neuroticism, extraversion, openness, agreeableness, and conscientiousness. Each trait score was z-scored (mean=0, standard deviation=1) within each sample so that all scores would be on the same metric and thus the estimates comparable across studies.

Arthritis. In the MIDUS, participants indicated whether they had experienced or been treated for arthritis, rheumatism, or other bone or joint diseases in the past twelve months. In the HRS and WLS, participants indicated whether a clinician ever communicated that they had arthritis or rheumatism. Participants in ELSA indicated whether a physician ever communicated that they had arthritis (including osteoarthritis or rheumatism). In NHATS, participants indicated whether a doctor communicated that they had arthritis (including osteo or rheumatoid arthritis).
since the last interview. Finally, participants in the LISS indicated whether a clinician communicated this last year that they had arthritis (including osteoarthritis, rheumatism, bone decalcification, or osteoporosis). In the six samples, arthritis was coded as 1 and no arthritis as 0.

**Covariates.** Analyses were adjusted for age (in years), sex (1= female, 0= male), and education in the six samples because of their association with arthritis (GBD 2021 osteoarthritis collaborator; Mohammed et al., 2020). Education was assessed in years in the HRS and the WLS; education was coded from 1 (no grade school) to 12 (doctoral level degree) in the MIDUS; education was coded from 1 (no schooling completed) to 9 (Master’s, professional, or doctoral degree) in the NHATS, and in ELSA from 1 (no qualification) to 7 (NVQ4/NVQ5/Degree or equivalent). Because of their link with arthritis (Mohammed et al., 2020), race and ethnicity were also controlled in samples with relevant data. Analyses of the MIDUS, HRS, ELSA, and NHATS included race (0=not African American/Black, 1=African American/Black). Analyses of HRS and NHATS included ethnicity (1=Hispanic or Latinx and 0= non Hispanic/Latinx). Sensitivity analyses further controlled for depressive symptoms, BMI, and smoking because of their link with arthritis (GBD 2021 osteoarthritis collaborators, 2023; Mohammed et al., 2020; Poole & Steptoe, 2018) (see Supplementary Material).

**Data analysis**

Personality associations with both concurrent and incident arthritis were first examined in each dataset separately. Meta-analyses were then used to combine the estimates from each sample. The association between personality traits and the concurrent risk of arthritis was examined using logistic regression. In each sample, arthritis was regressed on personality traits, controlling for age, sex, and education. Race (MIDUS, HRS, ELSA, and NHATS) and ethnicity (HRS and NHATS)
were also covariates. Personality traits were examined in separate analyses. Sensitivity analyses further included depressive symptoms, BMI, and smoking as covariates.

Cox proportional hazard models (survival analyses) tested the association between personality traits and incident arthritis. These analyses excluded participants with arthritis at baseline. The time (years) between baseline and the first reported diagnosis of arthritis was used to compute time-to-incidence. The last available assessment was used to censor participants without incident arthritis. Personality traits were examined separately; demographic covariates included age, sex, education, race and ethnicity (where relevant). Sensitivity analyses further included depressive symptoms, BMI, and smoking.

Exploratory analyses tested whether age and sex moderated the association of personality traits with both concurrent and incident arthritis by testing the interaction of age or sex with each personality trait. Analyses were conducted using the JAMOVI 2.3.18 software. Example scripts for the main analyses are provided in Supplementary Material.

Random-effect meta-analyses (with the Comprehensive Meta-Analysis software) were used to combine results from each sample. Between-sample heterogeneity was indexed by the $I^2$ and the Cochran Q indicators. According to Higgins et al. (2003), $I^2$ values around 0%, 25%, 50%, or 75% indicated no, little, modest, and elevated heterogeneity.

**Results**

The percentage of individuals with arthritis at baseline was 19% (N= 1,181; MIDUS), 62% (N= 7,854; HRS), 26% (N= 2,559; WLS), 65% (N= 1,788; NHATS), 38% (N= 3,090; ELSA), and 7% (N= 409; LISS) (Table 1). As expected, cross-sectional analyses revealed a significant association between higher neuroticism and an increased risk of concurrent arthritis (Odds Ratio = 1.20, 95%CI= 1.16-1.24, p<.001, $I^2$= 40.27, Q= 8.37, p=.14) and between higher
conscientiousness and a decreased risk of concurrent arthritis (Odds Ratio = 0.88, 95%CI= 0.86-0.90, p<.001, I²= 0, Q= 4.52, p=.48), adjusted for demographic factors (Table 2). Significant associations were found in the six samples for neuroticism and in four samples for conscientiousness (Table 2). A one standard deviation (SD) higher neuroticism and a one SD higher conscientiousness were respectively related to a 20% higher risk (range across the samples was 15-28%) and a 14% lower risk of concurrent arthritis (range across the samples with significant effects: 12-16%). Unexpectedly, higher extraversion (Odds Ratio = 0.92, 95%CI= 0.88-0.96, p<.001, I²= 76.09, Q= 20.91, p<.001) and openness (Odds Ratio = 0.96, 95%CI= 0.93-0.99, p=.006, I²= 35.86, Q= 7.79, p=.17) were related to a lower risk of concurrent arthritis, adjusting for demographic covariates (Table 2). These associations were apparent in three of six samples. A one SD higher extraversion and openness were related respectively to a 9% (range: 9-20%) and a 4% (range: 5-8%) decreased risk of concurrent arthritis. No association was found between agreeableness and concurrent arthritis in the meta-analysis (Odds Ratio = 1.00, 95%CI= 0.94-1.06, p=.95, I²= 83.90, Q= 31.05, p<.001).

The sensitivity analysis revealed that neuroticism (Odds Ratio = 1.11, 95%CI= 1.08-1.15, p<.001, I²= 17.82, Q= 6.08, p=.30) and conscientiousness (Odds Ratio = 0.96, 95%CI= 0.93-0.98, p<.001, I²= 0, Q= 4.55, p=.47) remained significant correlates of concurrent arthritis when adjusting for depressive symptoms, BMI, and smoking in addition to the demographic factors, but the associations were reduced by 45% and 67% respectively ([HR_{model1} – HR_{model2})/(HR_{model1} - 1)] x 100, Elovainio et al., 2017) (see Supplementary Table S1). The association between extraversion (Odds Ratio = 0.97, 95%CI= 0.93-1.01, p=.095, I²= 51.48, Q= 10.30, p=.067) and openness (Odds Ratio = 0.99, 95%CI= 0.96-1.03, p=.61, I²= 47.85, Q= 9.59, p=.087) and concurrent arthritis were
not significant when these psychological, clinical, and behavioral covariates were controlled in addition to the demographic factors.

Among individuals without arthritis at baseline, 25% (N= 793; MIDUS), 41% (N= 1853; HRS), 44% (N= 2,799; WLS), 37% (N= 322; NHATS), 19% (N= 874; ELSA), and 10% (N= 445; LISS) reported arthritis over time (Table 1). The median follow-up across the samples was 16.92 years (44,324 person-years) in MIDUS, 8.08 years (36,230 person-years) in HRS, 12.24 years (91,906 person-years) in WLS, 3.92 years (3,921 person-years) in NHATS, 7.83 years (28,968 person-years) in ELSA, and 7.66 years (37,220 person-years) in LISS. As hypothesized, higher neuroticism was significantly associated with an increased risk of incident arthritis (Hazard Ratio = 1.11, 95%CI= 1.08-1.14, p<.001, I²= 0, Q= 4.46, p=.48), and higher conscientiousness was significantly related to lower probability of incident arthritis (Hazard Ratio = 0.95, 95%CI= 0.92-0.98, p=.002, I²= 41.27, Q= 8.51, p=.13), controlling for demographic factors (Table 3). The association between neuroticism and incident arthritis was significant in the six samples, the link with conscientiousness was significant in two of six samples (Table 3). A 1-SD higher neuroticism was associated with an 11% increased risk of incident arthritis (range: 8-17%), whereas every 1-SD higher conscientiousness was related to a 5% decreased risk of incident arthritis (range across samples with significant effects: 8-9%). An unexpected association between extraversion and incident arthritis was found in the meta-analysis (Hazard Ratio = 0.97, 95%CI= 0.95-0.99, p=.018, I²= 0, Q= 4.34, p=.50), adjusted for demographic factors. (Table 3). However, this link was significant only in the LISS (Table 3), with 1-SD increase in extraversion associated with about 3% lower risk of incident arthritis. The meta-analysis discovered no association between openness (Hazard Ratio = 0.99, 95%CI= 0.97-1.02, p=.61, I²= 0, Q= 1.90, p=.86) or agreeableness (Hazard
Ratio = 1.01, 95%CI= 0.97-1.05, p=.53, $I^2$= 56.06, Q= 11.38, p=.044) and incident arthritis. Sensitivity analysis including demographic factors, depressive symptoms, BMI, and smoking found a significant association between neuroticism and incident arthritis, but it was reduced by 27% (Hazard Ratio = 1.08, 95%CI= 1.05-1.11, p<.001, $I^2$= 0, Q= 4.27, p=.51) (see Supplementary Table S2). The associations between extraversion (Hazard Ratio = 0.99, 95%CI= 0.97-1.02, p=.61, $I^2$= 0, Q= 3.21, p=.67) and conscientiousness (Hazard Ratio = 0.99, 95%CI= 0.96-1.02, p=.49, $I^2$= 0, Q= 4.44, p=.49) and incident arthritis were reduced to non-significant when demographic factors, depressive symptoms, BMI, and smoking were included in the model. Figure 1 provides the forest plot of the estimates from the six samples and the overall meta-analytic estimate for the association between neuroticism and conscientiousness and concurrent (Figures A and B) and incident arthritis (Figures C and D).

Additional analyses revealed little replicable evidence of a moderating role of age or sex in the association between personality traits and arthritis controlling for demographic factors (see Supplementary Material).

Discussion

Using six longitudinal samples that included more than 45,000 individuals, the cross-sectional and prospective analyses found personality traits associated with arthritis risk. Consistent with the hypotheses, neuroticism was associated with concurrent and incident arthritis, and conscientiousness was associated with lower risk of concurrent and incident arthritis. Unexpectedly, higher extraversion was significantly associated with lower risk of concurrent and incident arthritis, and openness was associated with lower risk of concurrent arthritis. These
associations, however, were weaker and less consistent across studies than for neuroticism and conscientiousness. As expected, agreeableness was unrelated to the risk of arthritis. The associations were generally consistent across several samples despite differences in culture, age, measure, and length of follow-up (ranging from 8 to 20 years). No systematic evidence of a moderating role of age or sex was found. This study extends research on personality and arthritis (Weston et al., 2015) by providing the largest and longest account to date on this association.

The most consistent and strongest relationships with arthritis were found with neuroticism and conscientiousness. These findings are broadly in line with evidence of an association between neuroticism and worse overall health, and the health-protective role of higher conscientiousness (Leger et al., 2021; Stephan et al., 2023; Strickhouser et al., 2017; Weston et al., 2020). These associations are also consistent with one study conducted in the HRS with a smaller sample and shorter follow-up (Weston et al., 2015). Several mechanisms potentially explain the association between these two traits and risk of arthritis. Personality traits emerge early in life and can influence behavior, lifestyles, stress reactivity, health conditions, educational, and occupational factors that increase arthritis risk. For example, higher neuroticism has been linked with depressive symptoms (Hakulinen et al., 2015a), higher BMI (Sutin & Terracciano, 2016; Vainik et al., 2019), and smoking (Hakulinen et al., 2015b), which are critical risk factors for arthritis (GBD 2021 osteoarthritis collaborators, 2023; Mohammed et al., 2020; Poole & Steptoe, 2018). In contrast, higher conscientiousness is associated with fewer depressive symptoms (Hakulinen et al., 2015a), lower BMI (Sutin & Terracciano, 2016; Vainik et al., 2019), and decreased smoking risk (Hakulinen et al., 2015b), which may lead to a reduced risk of arthritis. Consistent with this model, depressive symptoms, BMI, and smoking attenuated the associations of neuroticism and conscientiousness with concurrent and incident arthritis, which support the argument that these
factors may be pathways between neuroticism and conscientiousness and arthritis. Furthermore, these traits are related to higher stress reactivity (Leger et al., 2021), higher allostatic load (Yoneda et al., 2023), higher immunosenescence (Stephan et al., 2023a), and mitochondrial dysfunction (Oppong et al., 2022), which have been found to increase risk of arthritis (Chalan et al., 2015; Poole & Jackowska, 2019; Schwetlik et al., 2021; Svendsen et al., 2019). Furthermore, lower conscientiousness is associated with higher inflammation (Luchetti et al., 2014), which may result in higher risk of arthritis (Yoshida & Tanaka, 2014). Thus, the evidence supports a model in which higher neuroticism and lower conscientiousness are distal risk factors that may contribute the risk of arthritis through more proximal risk factors. Of note, although conscientiousness was related to a lower risk of incident arthritis in the meta-analysis, the effect was mainly driven by the significant effects observed in two (HRS and WLS) out of the six samples.

Unexpectedly but consistent with the previous study (Weston et al., 2015), extraversion and openness were related to lower risk of concurrent arthritis. Higher extraversion was also associated with a lower risk of incident arthritis in the meta-analysis, which was mainly driven by the significant association in the LISS. Although significant, these associations had smaller effect sizes than neuroticism and conscientiousness. Extraversion and openness are associated with lower BMI (Sutin & Terracciano, 2016) and fewer depressive symptoms (Hakulinen et al., 2015), which may lead to lower risk of arthritis. This interpretation is partly supported by the finding that BMI and depressive symptoms accounted for the association between extraversion and openness and arthritis. Finally, the lack of significant association between agreeableness and arthritis risk is in line with existing research that found no link with chronic conditions (Leger et al., 2021; Stephan et al., 2023).
The present study broadly contributes to the literature on personality and health (Friedman & Kern, 2014; Chapman et al., 2014) by identifying replicable evidence that personality traits are implicated in a highly prevalent musculoskeletal condition. This association could inform about the mechanisms linking personality to other health-related outcomes. Arthritis could partly explain why higher neuroticism and lower conscientiousness are related to lower grip strength (Stephan et al., 2022), slower gait speed (Stephan et al., 2018), higher frailty (Gale et al., 2017), more limitations in IADL (Canada et al., 2021), pain (Sutin et al., 2019), and health care utilization (Willroth et al., 2023). From a practical perspective, the personality traits assessment could help identify people at risk of arthritis and comorbid conditions; these individuals may benefit from preventive interventions. Emerging research also suggests that personality traits can be changed by interventions, such as reducing neuroticism and improving conscientiousness (Stieger et al., 2020), to reduce the risk of arthritis and other detrimental health outcomes.

The present study had strengths, like six large samples of middle-aged and older adults, the testing of concurrent and prospective associations, the longitudinal data spanning up to 20 years, the examination of the five personality dimensions, the adjustment in the analyses of demographic, psychological, clinical, and behavioral covariates, and the quantitative meta-analytic synthesis of effect sizes across samples. Several limitations are also worth mentioning. The correlational design prevents drawing conclusions about causality. Although personality could be considered a predictor of arthritis, arthritis incidence may also contribute to personality change (Jokela et al., 2014). Furthermore, arthritis was self-reported and did not differentiate between specific forms of arthritis, such as osteoarthritis and rheumatoid arthritis. More studies are needed to test whether the association between personality and arthritis is moderated by type of arthritis. The five broad
domains of personality were examined in this study, and more research focusing on facets is needed to provide a more detailed understanding of the association between personality and arthritis. Finally, the present study used samples from the US and two European countries (UK and Netherlands). More research is needed to test whether the pattern of results generalizes to other countries, especially from middle and low-income nations.

In sum, the present study indicates that personality is related to the risk of arthritis. Older adults who have higher neuroticism and lower conscientiousness are more likely to have or develop arthritis.
Funding

The research reported in this publication was supported in part by the National Institute on Aging of the National Institutes of Health (R01AG068093, R01AG053297). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflicts of Interest

None.

Data Availability and Acknowledgments

This study was not preregistered. The Health and Retirement Study (HRS) is sponsored by the National Institute on Aging (NIA-U01AG009740) and conducted by the University of Michigan. The HRS was approved by the University of Michigan IRB. The Midlife in the United States (MIDUS) is sponsored by the MacArthur Foundation Research Network on Successful Midlife Development, the National Institute on Aging (P01-AG020166; U19-AG051426), and grants from the General Clinical Research Centers Program (M01-RR023942, M01-RR00865) and the National Center for Advancing Translational Sciences (UL1TR000427). The MIDUS Study was approved by the Education and Social/Behavioral Sciences and the Health Sciences IRB at the University of Wisconsin-Madison. The National Health and Aging Trends Study (NHATS) is sponsored by the National Institute on Aging (grant number NIA U01AG032947) through a cooperative agreement with the Johns Hopkins Bloomberg School of Public Health. The NHATS was approved by the Johns Hopkins Bloomberg School of Public Health IRB. The Wisconsin Longitudinal Study (WLS) has been supported principally by the National Institute on Aging (AG-9775, AG-21079, AG-033285, and AG-041868), with additional support from the Vilas Estate Trust, the National Science Foundation, the Spencer Foundation, and the Graduate School of the
University of Wisconsin-Madison. The WLS received approval from the Health Sciences IRB at University of Wisconsin–Madison. The Longitudinal Internet Studies for the Social Sciences (LISS) panel data were collected by CentERdata (Tilburg University, The Netherlands) through its MESS project funded by the Netherlands Organization for Scientific Research. Funding for the English Longitudinal Study of Ageing is provided by the National Institute of Aging [grants 2RO1AG7644-01A1 and 2RO1AG017644] and a consortium of UK government departments coordinated by the Office for National Statistics. The National Research Ethics Service approved ELSA. ELSA data are available from the UK Data Service (UKDS, https://www.ukdataservice.ac.uk/).
References


incident rheumatoid arthritis: a 20-year follow-up matched case-cohort study.


https://doi.org/10.1016/j.semarthrit.2014.10.012

https://doi.org/10.1002/acr.24528

https://doi.org/10.1177/1948550617725152

https://doi.org/10.1016/j.jpsychoes.2022.110961

https://doi.org/10.1016/j.jrpp.2016.12.006

https://doi.org/10.1016/j.psyneuen.2023.106113


Table 1. Descriptive Statistics for the Six Samples

<table>
<thead>
<tr>
<th>Variables</th>
<th>MIDUS (N = 6,078)</th>
<th>HRS (N = 12,648)</th>
<th>WLS (N = 10,008)</th>
<th>NHATS (N = 2,270)</th>
<th>ELSA (N = 8,115)</th>
<th>LISS (N = 5,794)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M / SD</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>46.80 / 12.90</td>
<td>68.58 / 9.90</td>
<td>53.30 / 4.30</td>
<td>79.49 / 7.52</td>
<td>66.10 / 8.69</td>
<td>45.81 / 15.66</td>
</tr>
<tr>
<td>Sex (% women)</td>
<td>53% -</td>
<td>58% -</td>
<td>53% -</td>
<td>59% -</td>
<td>55% -</td>
<td>54% -</td>
</tr>
<tr>
<td>Race (% African American/Black)</td>
<td>5% -</td>
<td>11% -</td>
<td>0% -</td>
<td>20% -</td>
<td>2% - a</td>
<td>-</td>
</tr>
<tr>
<td>Ethnicity (% Hispanic)</td>
<td>- -</td>
<td>7% -</td>
<td>0% -</td>
<td>5% -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Education</td>
<td>6.88 / 2.47</td>
<td>12.90 / 2.92</td>
<td>13.73 / 2.39</td>
<td>5.20 / 2.26</td>
<td>4.17 / 2.23</td>
<td>3.43 / 1.51</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>2.24 / 0.66</td>
<td>2.05 / 0.61</td>
<td>3.21 / 0.97</td>
<td>2.22 / 0.86</td>
<td>2.10 / 0.59</td>
<td>2.58 / 0.68</td>
</tr>
<tr>
<td>Extraversion</td>
<td>3.20 / 0.56</td>
<td>3.19 / 0.56</td>
<td>3.81 / 0.90</td>
<td>3.13 / 0.76</td>
<td>3.15 / 0.56</td>
<td>3.29 / 0.63</td>
</tr>
<tr>
<td>Openness</td>
<td>3.02 / 0.53</td>
<td>2.94 / 0.56</td>
<td>3.63 / 0.78</td>
<td>2.81 / 0.84</td>
<td>2.88 / 0.55</td>
<td>3.51 / 0.50</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>3.49 / 0.49</td>
<td>3.53 / 0.48</td>
<td>4.73 / 0.74</td>
<td>3.57 / 0.56</td>
<td>3.51 / 0.48</td>
<td>3.91 / 0.49</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>3.42 / 0.44</td>
<td>3.36 / 0.48</td>
<td>4.84 / 0.69</td>
<td>3.20 / 0.75</td>
<td>3.30 / 0.49</td>
<td>3.73 / 0.52</td>
</tr>
<tr>
<td>Baseline Arthritis (%)</td>
<td>19% -</td>
<td>62% -</td>
<td>26% -</td>
<td>65% -</td>
<td>38% -</td>
<td>7% -</td>
</tr>
<tr>
<td>Incident Arthritis (%)</td>
<td>25% -</td>
<td>41% -</td>
<td>44% -</td>
<td>37% -</td>
<td>19% -</td>
<td>10% -</td>
</tr>
<tr>
<td>Measurement occasions</td>
<td>3 -</td>
<td>8 -</td>
<td>3 -</td>
<td>10 -</td>
<td>5 -</td>
<td>15 -</td>
</tr>
<tr>
<td>Maximum follow-up time (in years)</td>
<td>19 -</td>
<td>15 -</td>
<td>20 -</td>
<td>9 -</td>
<td>9 -</td>
<td>15 -</td>
</tr>
</tbody>
</table>

a Percent of non-white participants.

b Individuals who reported arthritis at baseline were excluded.
Table 2. Summary of Logistic Regression Analysis Predicting Risk of Concurrent Arthritis from Personality Traits in the Six Samples

| Variable     | MIDUS  
|             | (N = 6,078) | HRS  
|             | (N = 12,648) | WLS  
|             | (N = 10,008) | NHATS  
|             | (N = 2,770) | ELSA  
|             | (N = 8,115) | LISS  
|             | (N = 5,794) | Pooled | Heterogeneity | Cochran Q |
|             | Odds Ratio | I² | Q   |   |   |
| Neuroticism | 1.19     | 1.20 | 1.17 | 1.15 | 1.28 | 1.20 | 40.27 | 8.37 | .137 |
|             | (1.11-1.28) | (1.14-1.26) | p<.001 | (1.07-1.27) | p<.001 | (1.09-1.41) | p<.001 | (1.16-1.24) | p=.001 |
| Extraversion| 0.91     | 0.96 | 0.97 | 0.83 | 0.97 | 0.92 | 76.09 | 20.91 | .001 |
|             | (0.85-0.97) | (0.91-1.00) | p=.004 | (0.89-0.95) | p=.001 | (0.87-0.99) | p<.001 | (0.88-0.96) | p=.001 |
| Openness    | 0.93     | 1.00 | 0.96 | 0.93 | 1.03 | 0.96 | 35.86 | 7.79 | .168 |
|             | (0.87-1.00) | (0.96-1.06) | p=.047 | (0.88-0.97) | p=.001 | (0.92-1.15) | p=.006 | (0.93-0.99) | p=.006 |
| Agreeableness| 0.99 | 0.89 | 1.00 | 1.04 | 1.08 | 1.00 | 83.90 | 31.05 | .001 |
|             | (0.92-1.06) | (0.85-0.93) | p=.782 | (0.92-1.09) | p=.001 | (0.96-1.21) | p=.184 | (0.94-1.06) | p=.946 |
| Conscientiousness | 0.86 | 0.89 | 0.95 | 0.88 | 0.91 | 0.88 | 4.52 | .477 |
|             | (0.80-0.91) | (0.85-1.02) | p<.001 | (0.84-0.92) | p<.001 | (0.86-1.01) | p=.001 | (0.86-0.90) | p=.001 |

Note: Odds ratios and 95% confidence intervals are presented for each sample. Heterogeneity is assessed using the Cochran Q test, followed by the p-value. Adjusted for age, sex, education, and race. a Adjusted for age, sex, education, and race. b Adjusted for age, sex, education, race, and ethnicity. c Adjusted for age, sex, and education.
Table 3. Summary of Cox Regression Analysis Predicting Incident Arthritis from Personality Traits in the Six Samples

<table>
<thead>
<tr>
<th>Variable</th>
<th>MIDUS (^a) (N = 3,194)</th>
<th>HRS (^b) (N = 4,486)</th>
<th>WLS (^c) (N = 6,425)</th>
<th>NHATS (^b) (N = 861)</th>
<th>ELSA (^a) (N = 4,633)</th>
<th>LISS (^c) (N = 4,596)</th>
<th>Pooled Odds Ratio</th>
<th>Heterogeneity I(^2)</th>
<th>Cochran Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroticism</td>
<td>1.11 (1.03-1.19)</td>
<td>1.13 (1.07-1.19)</td>
<td>1.08 (1.04-1.13)</td>
<td>1.16 (1.04-1.29)</td>
<td>1.12 (1.04-1.20)</td>
<td>1.17 (1.06-1.27)</td>
<td>1.11 (1.08-1.14)</td>
<td>0</td>
<td>4.46 p=.485</td>
</tr>
<tr>
<td>Extraversion</td>
<td>0.99 (0.92-1.06)</td>
<td>0.96 (0.92-1.02)</td>
<td>0.99 (0.95-1.02)</td>
<td>1.01 (0.90-1.12)</td>
<td>0.96 (0.90-1.03)</td>
<td>0.90 (0.82-0.99)</td>
<td>0.97 (0.95-0.99)</td>
<td>0</td>
<td>4.34 p=.501</td>
</tr>
<tr>
<td>Openness</td>
<td>0.99 (0.92-1.06)</td>
<td>1.00 (0.95-1.05)</td>
<td>0.99 (0.95-1.03)</td>
<td>1.06 (0.95-1.18)</td>
<td>0.97 (0.91-1.04)</td>
<td>0.99 (0.90-1.10)</td>
<td>0.99 (0.97-1.02)</td>
<td>0</td>
<td>1.90 p=.862</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>1.09 (1.01-1.18)</td>
<td>0.98 (0.94-1.03)</td>
<td>0.97 (0.93-1.00)</td>
<td>1.06 (0.95-1.19)</td>
<td>1.02 (0.95-1.09)</td>
<td>1.05 (0.95-1.16)</td>
<td>1.01 (0.97-1.05)</td>
<td>56.06</td>
<td>11.38 p=.044</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>1.02 (0.95-1.09)</td>
<td>0.93 (0.88-0.98)</td>
<td>0.92 (0.88-1.11)</td>
<td>0.99 (0.88-1.11)</td>
<td>0.96 (0.89-1.02)</td>
<td>0.95 (0.86-1.04)</td>
<td>0.95 (0.92-0.98)</td>
<td>41.27</td>
<td>8.51 p=.130</td>
</tr>
</tbody>
</table>

\(^a\) Adjusted for age, sex, education, and race
\(^b\) Adjusted for age, sex, education, race, and ethnicity
\(^c\) Adjusted for age, sex, and education
Figure Caption

Figure 1. Forest Plot of the Association between Neuroticism and Conscientiousness with the Risk of Concurrent and Incident Arthritis
Figure 1

Panel A
Neuroticism (Cross-Sectional)

<table>
<thead>
<tr>
<th>Study</th>
<th>OR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDUS</td>
<td>1.19 [1.11, 1.28]</td>
</tr>
<tr>
<td>HRS</td>
<td>1.24 [1.20, 1.29]</td>
</tr>
<tr>
<td>WLS</td>
<td>1.20 [1.14, 1.26]</td>
</tr>
<tr>
<td>NHATS</td>
<td>1.17 [1.07, 1.27]</td>
</tr>
<tr>
<td>ELSA</td>
<td>1.15 [1.09, 1.20]</td>
</tr>
<tr>
<td>LISS</td>
<td>1.28 [1.15, 1.41]</td>
</tr>
</tbody>
</table>

Overall 1.20 [1.16, 1.24]

Panel B
Conscientiousness (Cross-sectional)

<table>
<thead>
<tr>
<th>Study</th>
<th>OR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDUS</td>
<td>0.86 [0.80, 0.91]</td>
</tr>
<tr>
<td>HRS</td>
<td>0.87 [0.84, 0.91]</td>
</tr>
<tr>
<td>WLS</td>
<td>0.89 [0.85, 0.94]</td>
</tr>
<tr>
<td>NHATS</td>
<td>0.95 [0.87, 1.03]</td>
</tr>
<tr>
<td>ELSA</td>
<td>0.88 [0.84, 0.92]</td>
</tr>
<tr>
<td>LISS</td>
<td>0.91 [0.81, 1.01]</td>
</tr>
</tbody>
</table>

Overall 0.88 [0.86, 0.90]

Panel A
Neuroticism (Longitudinal)

<table>
<thead>
<tr>
<th>Study</th>
<th>HR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDUS</td>
<td>1.11 [1.03, 1.19]</td>
</tr>
<tr>
<td>HRS</td>
<td>1.13 [1.07, 1.19]</td>
</tr>
<tr>
<td>WLS</td>
<td>1.08 [1.04, 1.13]</td>
</tr>
<tr>
<td>NHATS</td>
<td>1.16 [1.03, 1.29]</td>
</tr>
<tr>
<td>ELSA</td>
<td>1.12 [1.04, 1.20]</td>
</tr>
<tr>
<td>LISS</td>
<td>1.17 [1.06, 1.27]</td>
</tr>
</tbody>
</table>

Overall 1.11 [1.08, 1.14]

Panel B
Conscientiousness (Longitudinal)

<table>
<thead>
<tr>
<th>Study</th>
<th>HR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDUS</td>
<td>1.02 [0.95, 1.09]</td>
</tr>
<tr>
<td>HRS</td>
<td>0.93 [0.88, 0.98]</td>
</tr>
<tr>
<td>WLS</td>
<td>0.92 [0.85, 0.96]</td>
</tr>
<tr>
<td>NHATS</td>
<td>0.99 [0.88, 1.11]</td>
</tr>
<tr>
<td>ELSA</td>
<td>0.96 [0.89, 1.02]</td>
</tr>
<tr>
<td>LISS</td>
<td>0.95 [0.86, 1.04]</td>
</tr>
</tbody>
</table>

Overall 0.95 [0.92, 0.98]
Sensitivity analyses were conducted that included depressive symptoms, BMI and smoking as covariates. The Composite International Diagnostic Interview Short Form (CIDI-SF) (Kessler et al., 1998) was used in the MIDUS. Participants were asked to report whether they experienced depressive symptoms that lasted for two weeks during the last 12 months. A composite score was computed with higher values indicating higher depressive symptoms. An 8-item version of the Center for Epidemiologic Studies Depression Scale (CES-D) (Wallace et al., 2000) was used in the HRS and ELSA. Participants indicated whether they experienced eight symptoms during the past week. The sum of symptoms was taken, with higher scores indicating more depressive symptoms. The WLS used a 20-item version of the CES-D (Radloff, 1977). Participants were asked on how many days in the last week participants experienced 20 symptoms. Answers were averaged, with higher scores indicating higher depressive symptoms. In NHATS, depressive symptoms were measured with the Patient Health Questionnaire-2 (PHQ-2) (Kroenke et al., 2003). Participants answered two items on how often they had little interest or pleasure in doing things, and how often they felt down, depressed, or hopeless over the last. A scale ranging from 1 (not at all) to 4 (everyday) was used. Answers to the two items were averaged, with higher scores indicating higher depressive symptoms. Finally, the LISS used a 5-item subscale of the MOS 36-item short form health survey (Ware & Sherbourne, 1992). Participants rated their mental health during the past month on 6-point Likert scales (1= never to 6= continuously). The mean was taken, with higher scores indicating worse mental health.

BMI was computed as kg/m² based on objective assessment of weight and height in HRS and ELSA, and on self-reported height and weight in MIDUS, NHATS, WLS, and LISS. In the six samples, smoking was coded as 1 for current/former smoker and 0 for never smoker.
Table S1
Summary of Logistic Regression Analysis Predicting Risk of Concurrent Arthritis from Personality Traits in the Six Samples, Controlling for Depressive Symptoms, BMI and Smoking

<table>
<thead>
<tr>
<th>Variable</th>
<th>MIDUS a</th>
<th>HRS b</th>
<th>WLS c</th>
<th>NHATS b</th>
<th>ELSA a</th>
<th>LISS c</th>
<th>Pooled Odds Ratio</th>
<th>Heterogeneity I²</th>
<th>Cochran Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroticism</td>
<td>1.13</td>
<td>1.15</td>
<td>1.12</td>
<td>1.14</td>
<td>1.05</td>
<td>1.05</td>
<td>1.11</td>
<td>17.82</td>
<td>6.08</td>
</tr>
<tr>
<td></td>
<td>(1.05-1.22)</td>
<td>(1.10-1.21)</td>
<td>(1.06-1.18)</td>
<td>(1.04-1.24)</td>
<td>(0.99-1.12)</td>
<td>(0.93-1.19)</td>
<td>(1.08-1.15)</td>
<td>p=.298</td>
<td></td>
</tr>
<tr>
<td>p=.001</td>
<td>p&lt;.001</td>
<td>p&lt;.001</td>
<td>p=.006</td>
<td>p=.077</td>
<td>p=.402</td>
<td>p&lt;.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraversion</td>
<td>0.94</td>
<td>0.99</td>
<td>1.00</td>
<td>0.97</td>
<td>0.90</td>
<td>0.97</td>
<td>0.97</td>
<td>51.48</td>
<td>10.30</td>
</tr>
<tr>
<td></td>
<td>(0.88-1.01)</td>
<td>(0.95-1.04)</td>
<td>(0.95-1.05)</td>
<td>(0.89-1.06)</td>
<td>(0.85-0.96)</td>
<td>(0.92-1.16)</td>
<td>(0.93-1.01)</td>
<td>p=.067</td>
<td></td>
</tr>
<tr>
<td>Openness</td>
<td>0.94</td>
<td>0.97</td>
<td>1.06</td>
<td>0.97</td>
<td>0.97</td>
<td>1.04</td>
<td>0.99</td>
<td>47.85</td>
<td>9.59</td>
</tr>
<tr>
<td></td>
<td>(0.88-1.01)</td>
<td>(0.93-1.02)</td>
<td>(1.00-1.11)</td>
<td>(0.89-1.06)</td>
<td>(0.92-1.03)</td>
<td>(0.93-1.16)</td>
<td>(0.96-1.03)</td>
<td>p=.087</td>
<td></td>
</tr>
<tr>
<td>Agreeableness</td>
<td>0.99</td>
<td>1.06</td>
<td>0.96</td>
<td>1.02</td>
<td>1.07</td>
<td>1.08</td>
<td>1.03</td>
<td>61.56</td>
<td>13.01</td>
</tr>
<tr>
<td></td>
<td>(0.92-1.07)</td>
<td>(1.02-1.11)</td>
<td>(0.91-1.01)</td>
<td>(0.94-1.12)</td>
<td>(1.01-1.13)</td>
<td>(0.97-1.22)</td>
<td>(0.98-1.07)</td>
<td>p=.023</td>
<td></td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>0.91</td>
<td>0.95</td>
<td>0.98</td>
<td>1.00</td>
<td>0.94</td>
<td>0.97</td>
<td>0.96</td>
<td>0</td>
<td>4.55</td>
</tr>
<tr>
<td></td>
<td>(0.85-0.97)</td>
<td>(0.91-0.99)</td>
<td>(0.93-1.03)</td>
<td>(0.92-1.10)</td>
<td>(0.89-1.00)</td>
<td>(0.86-1.08)</td>
<td>(0.93-0.98)</td>
<td>p=.473</td>
<td></td>
</tr>
</tbody>
</table>

a Adjusted for age, sex, education, and race
b Adjusted for age, sex, education, race, and ethnicity
c Adjusted for age, sex, and education
Table S2
Summary of Cox Regression Analysis Predicting Incident Arthritis from Personality Traits in the Six Samples, Controlling for Depressive Symptoms, BMI and Smoking

<table>
<thead>
<tr>
<th>Variable</th>
<th>MIDUS</th>
<th>HRS</th>
<th>WLS</th>
<th>NHATS</th>
<th>ELSA</th>
<th>LISS</th>
<th>Pooled Odds Ratio</th>
<th>Heterogeneity</th>
<th>Cochran Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 3,095)</td>
<td>(N = 3,835)</td>
<td>(N = 6,208)</td>
<td>(N = 834)</td>
<td>(N = 3,596)</td>
<td>(N = 4,587)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuroticism</td>
<td>1.09 (1.01-1.17)</td>
<td>1.10 (1.04-1.16)</td>
<td>1.05 (1.01-1.09)</td>
<td>1.15 (1.02-1.29)</td>
<td>1.12 (1.03-1.22)</td>
<td>1.04 (0.93-1.16)</td>
<td>1.08 (1.05-1.11)</td>
<td>0</td>
<td>4.27</td>
</tr>
<tr>
<td>Extraversion</td>
<td>1.01 (0.94-1.08)</td>
<td>0.99 (0.96-1.04)</td>
<td>1.00 (0.93-1.16)</td>
<td>1.04 (0.90-1.06)</td>
<td>0.98 (0.83-1.01)</td>
<td>0.92 (0.97-1.02)</td>
<td>0</td>
<td>3.21</td>
<td></td>
</tr>
<tr>
<td>Openness</td>
<td>1.00 (0.93-1.07)</td>
<td>1.01 (0.96-1.06)</td>
<td>1.01 (0.97-1.05)</td>
<td>1.09 (0.97-1.22)</td>
<td>1.09 (0.89-1.04)</td>
<td>1.00 (0.90-1.10)</td>
<td>1.01 (0.98-1.03)</td>
<td>0</td>
<td>3.36</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>1.09 (1.01-1.18)</td>
<td>1.00 (0.95-1.05)</td>
<td>1.01 (0.97-1.05)</td>
<td>1.09 (0.97-1.23)</td>
<td>1.01 (0.93-1.09)</td>
<td>1.01 (0.95-1.16)</td>
<td>1.05 (1.00-1.05)</td>
<td>1.70</td>
<td>5.09</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>1.05 (0.97-1.13)</td>
<td>0.96 (0.91-1.01)</td>
<td>0.98 (0.94-1.01)</td>
<td>1.03 (0.91-1.16)</td>
<td>1.01 (0.93-1.09)</td>
<td>0.99 (0.90-1.10)</td>
<td>0.99 (0.96-1.02)</td>
<td>0</td>
<td>4.44</td>
</tr>
</tbody>
</table>

*a Adjusted for age, sex, education, and race  
*b Adjusted for age, sex, education, race, and ethnicity  
*c Adjusted for age, sex, and education
Interactions between personality and age and sex

There was little replicable evidence for an interaction between personality and sex across the six samples. In the MIDUS, higher agreeableness was related to a lower risk of concurrent arthritis among older adults (OR: 0.92, 95%CI: 0.86-0.99, p=.035) and to a higher risk of incident arthritis among younger individuals (HR: 1.10, 95%CI: 1.02-1.19, p=.018). Openness was more strongly associated with a lower risk of concurrent arthritis among older individuals in the HRS (OR: 1.05, 95%CI: 1.01-1.10, p=.007) and ELSA (OR: 1.08, 95% CI: 1.03-1.13, p<.001). The link between conscientiousness and lower risk of concurrent arthritis was stronger among younger individuals in the HRS (OR: 1.10, 95%CI: 1.06-1.14, p<.001) and among older individuals in ELSA (OR: 1.07, 95%CI: 1.03-1.12, p=.002). Furthermore, higher conscientiousness was more strongly related to a lower risk of incident arthritis among younger individuals at baseline in ELSA (HR: 1.09, 95%CI: 1.02-1.16, p=.009). In ELSA, extraversion was more strongly related to lower risk of concurrent arthritis among younger individuals (OR: 1.05, 95%CI: 1.01-1.10, p=.021).

There was also little replicable evidence for an interaction between personality and sex across the six samples. In the HRS, extraversion (OR: 91, 95%CI: 0.84-0.98, p=.015) and conscientiousness were related to a higher risk of concurrent arthritis among women (OR: .90, 95%CI: .84-.98, p=.010). Openness was associated with a lower risk of concurrent arthritis among men in the WLS (OR: 1.16, 95%CI: 1.05-1.27, p=.003). Agreeableness was related to a lower risk of concurrent arthritis among women in the NHATS (OR: 1.21, 95%CI: 1.03-1.42, p=.022) whereas it was associated with a higher risk of incident arthritis among women (HR: 1.34, 95%CI: 1.06-1.70, p=.014). Neuroticism was associated with a higher risk of incident arthritis among men in the LISS (HR: 0.69, 95%CI: 0.56-0.83, p=.001).
Example Scripts

Logistic regressions were conducted using JAMOVI 2.3.18 to test the relationship between personality and the risk of concurrent arthritis, controlling for demographic factors.

An example syntax is presented below using MIDUS data with neuroticism as a predictor. This syntax was obtained using the « R Syntax Mode » in JAMOVI, which produces equivalent R code for each analysis:

```r
jmv::logRegBin(
    data = data,
    dep = Arthritis,
    covs = vars(Education, Age, Neuroticism),
    factors = vars(sex, race),
    blocks = list(
        list(
            "Education",
            "sex",
            "Age",
            "race",
            "Neuroticism"),
        refLevels = list(
            list(
                var="Arthritis",
                ref="0"),
            list(
                var="sex",
                ref="0"),
            list(
                var="race",
                ref="0")))
)```
Logistic regressions were conducted using JAMOVI 2.3.18 to test the relationship between personality and the risk of concurrent arthritis, controlling for demographic factors and BMI, smoking, and depressive symptoms. An example syntax is presented below using MIDUS data with neuroticism as a predictor.

```r
jmv::logRegBin(
  data = data,
  dep = Arthritis,
  covs = vars(Education, Age, Neuroticism, BMI, Depression),
  factors = vars(sex, race, Smoking),
  blocks = list(
    list(
      "Education",
      "sex",
      "Age",
      "race",
      "Neuroticism",
      "BMI",
      "Smoking",
      "Depression"),
    refLevels = list(
      list(
        var="Arthritis",
        ref="0"),
      list(
        var="sex",
        ref="0"),
      list(
        var="race",
        ref="0"),
      list(
        var="Education",
        ref="0"),
      list(
        var="Age",
        ref="0"),
      list(
        var="BMI",
        ref="0"),
      list(
        var="Smoking",
        ref="0"),
      list(
        var="Depression",
        ref="0")),
  )
)```
Cox regression analyses were conducted using JAMOVI 2.3.18 to test the relationship between personality and the risk of incident arthritis, controlling for demographic factors.

An example syntax is presented below using MIDUS data with neuroticism as a predictor. This syntax was obtained using the « R Syntax Mode » in JAMOVI, which produces equivalent R code for each analysis:

```r
jsurvival::multisurvival(
  data = data,
  elapsedtime = Time,
  dxdate = ,
  fudate = ,
  outcome = Arthritis,
  outcomeLevel = "1",
  dod = NULL,
  dooc = NULL,
  awd = NULL,
  awod = NULL,
  explanatory = vars(race, sex),
  contexpl = vars(Education, Neuroticism, Age),
  adjexplanatory = )
```

Cox regression analyses were conducted using JAMOVI 2.3.18 to test the relationship between personality and the risk of incident arthritis, controlling for demographic factors and BMI, smoking and depressive symptoms.
An example syntax is presented below using MIDUS data with neuroticism as a predictor.

```r
call(c Giám survival::multisurvival(
  data = data,
  elapsedTime = Time,
  dxdate = ,
  fudate = ,
  outcome = Arthritis,
  outcomeLevel = "1",
  dod = NULL,
  dooc = NULL,
  awd = NULL,
  awod = NULL,
  explanatory = vars(race, sex, Smoking),
  contexpl = vars(Education, Neuroticism, Age, Depression, BMI),
  adjexplanatory = )
```